Bài1 Tìm x biết:
a) (2x + 3) \(^2\)=\(\frac{36}{25}\)
b)5,4 - 3/ x - \(\frac{21}{10}\)/
c) 10\(\sqrt{x}-5\)=25
1.TÌM X,BIẾT:
a)\(\frac{1}{2}\)+\(\frac{2}{3}\): X = \(\frac{3}{4}\)
b) 5,4 - 3 ./X -\(\frac{21}{10}\)/ = 0
c) 10.\(\sqrt{x-5}\)= 25
a) \(\frac{1}{2}+\frac{2}{3}:x=\frac{3}{4}\)
=> \(\frac{2}{3}:x=\frac{3}{4}-\frac{1}{2}\)
=> \(\frac{2}{3}:x=\frac{1}{4}\)
=> \(x=\frac{2}{3}:\frac{1}{4}=\frac{8}{3}\)
b) \(5,4-3\left|x-\frac{21}{10}\right|=0\)
=> \(3\left|x-\frac{21}{10}\right|=\frac{27}{5}\)
=> \(\left|x-\frac{21}{10}\right|=\frac{27}{5}:3=\frac{9}{5}\)
=> \(\left|x-\frac{21}{10}\right|=\frac{9}{5}\)
Trường hợp 1 : \(x-\frac{21}{10}=\frac{9}{5}\)
=> \(x=\frac{9}{5}+\frac{21}{10}=\frac{39}{10}\)
Trường hợp 2 : \(x-\frac{21}{10}=-\frac{9}{5}\)
=> \(x=-\frac{9}{5}+\frac{21}{10}=\frac{3}{10}\)
Vậy : ...
c) \(10\sqrt{x-5}=25\)
=> \(\sqrt{x-5}=\frac{5}{2}\)
=> \(\left(x-5\right)^2=\frac{25}{4}\)
Trường hợp 1 :
\(x-5=\frac{25}{4}\)=> \(x=\frac{25}{4}+5=\frac{45}{4}\)
Trường hợp 2 :
\(x-5=-\frac{25}{4}\)=> \(x=-\frac{25}{4}+5=-\frac{5}{4}\)(loại)
Vậy \(x=\frac{45}{4}\)
Tìm x, biết:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
b) \(\sqrt{25-20x+4x^2}+2x=5\)
a,\(Đkxđ:x\ge3\)
Ta có:
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow|x-3|=3-x\)
\(\Leftrightarrow x-3=\left[{}\begin{matrix}x-3\\3-x\end{matrix}\right.\)
\(TH1:x-3=x-3\Leftrightarrow0x=0\)
\(\Rightarrow\)\(x\in R\) và \(x\ge3\)
\(TH2:x-3=3-x\Leftrightarrow2x=6\Leftrightarrow x=3\)( ko thỏa mãn điều kiện)
vậy \(\left\{x\in R/x\ge3\right\}\)
b, \(Đkxđ:x\le\dfrac{5}{2}\)
Ta có:
\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in R\\x=\dfrac{5}{2}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(\left\{x\in R/x\le\dfrac{5}{2}\right\}\)
\(\sqrt{12-\frac{12}{x^2} }+\sqrt{x^2+\frac{12}{x} }=x^2+\frac{25}{2} \)
\(\frac{\sqrt[3]{10-x}+\sqrt[3]{8-x}}{\sqrt[3]{10-x}-\sqrt[3]{8-x}}=9-x \)
\(4x^2+\sqrt{2x+1}+5=12x\)
Tìm các số x,y,z biết rằng
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}\) và xyz= 6720
\(\frac{2x-3}{2x-5}=\frac{2x+5}{2x+8}\)
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(2x^3-1=15\)
Rút gọn biểu thức sau
a)A= 2 - x\(\sqrt{\frac{x}{x-2}+\frac{1}{x^2-4x+4}}\left(x>2\right)\)
b) B= \(\frac{2x}{x-2}\sqrt{5\left(x-2\right)^2}+\frac{\sqrt{45x^4}}{x}\left(x\ne0;x\ne2\right)\)
c) C= \(\frac{x-25}{x+5\sqrt{x}}+\sqrt{\frac{x-2\sqrt{x}+1}{x-10\sqrt{x}+25}}\left(x>0;x\ne5\right)\)
\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)
\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)
\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)
Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)
Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)
\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)
Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
aTìm đkxd
bRút gọn
c Tìm x để A<\(\frac{1}{3}\)
Tìm x, biết:
a)\(x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\);
b)\(3,7 - x = \frac{7}{{10}};\)
c)\(x.\frac{3}{2} = 2,4\);
d)\(3,2:x = - \frac{6}{{11}}\).
a)
\(\begin{array}{l}x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\\x = \frac{{ - 4}}{{15}} + \frac{1}{5}\\x = \frac{{ - 4}}{{15}} + \frac{3}{{15}}\\x = \frac{{ - 1}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{15}}\).
b)
\(\begin{array}{l}3,7 - x = \frac{7}{{10}}\\x = 3,7 - \frac{7}{{10}}\\x = \frac{{37}}{{10}} - \frac{7}{{10}}\\x=\frac{30}{10}\\x = 3\end{array}\)
Vậy \(x = 3\).
c)
\(\begin{array}{l}x.\frac{3}{2} = 2,4\\x.\frac{3}{2} = \frac{{12}}{5}\\x = \frac{{12}}{5}:\frac{3}{2}\\x = \frac{{12}}{5}.\frac{2}{3}\\x = \frac{8}{5}\end{array}\)
Vậy \(x = \frac{8}{5}\)
d)
\(\begin{array}{l}3,2:x = - \frac{6}{{11}}\\\frac{{16}}{5}:x = - \frac{6}{{11}}\\x = \frac{{16}}{5}:\left( { - \frac{6}{{11}}} \right)\\x = \frac{{16}}{5}.\frac{{ - 11}}{6}\\x = \frac{{ - 88}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 88}}{{15}}\).
Cho A= \(\frac{\sqrt{x}}{\sqrt{x-5}}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}-5}\)
a) Rút gọn bt A
b) Tìm x để A< \(\frac{1}{3}\)
M=\(5\sqrt{x}-\frac{\left(x-10\sqrt{x}+25\right)\left(\sqrt{x}+5\right)}{x-25}\)với 0<x khác 25
N=\(\frac{\sqrt{4x^2-4x+1}}{2x-1}\)với x khác \(\frac{1}{2}\)