Giải phương trình
a \(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
b \(x-6\sqrt{x}+9=0\)
c \(\sqrt{9x-27}+\sqrt{x-3}-\frac{1}{2}\sqrt{4x-12}=7\)
d \(3\sqrt{8x+4}-\frac{1}{3}\sqrt{18x+9}-\frac{1}{2}\sqrt{50x+25}+\sqrt[]{\frac{2x+1}{4}}=6\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)
Rút gọn:
a,\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)
b,\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}\)
c,\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)
d,\(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
e,\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
g,\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
1. Rút gọn: \(P=\frac{3-2\sqrt{3}}{2-\sqrt{3}}+\frac{12}{5+3\sqrt{3}}\)
2. Cho biểu thức: \(P=\frac{x}{x-\sqrt{x}}+\frac{2}{x+2\sqrt{x}}+\frac{x+2}{x\sqrt{x}+2\sqrt{x}}+\frac{2 \left(x-\sqrt{x}\right)}{\sqrt{x}-1}\)
Tìm x để P < 0, khi đó hãy tìm giá trị nhỏ nhất của P
1, \(\frac{x}{2}-\frac{3-x}{3}=\frac{2x+2}{5}\)
2,1-\(\frac{3-x}{3}=\frac{2x+2}{5}-\frac{2-x}{4}\)
3,\(\frac{2}{3}x+1=x-5\)
4, 2x-x2 =0
5,\(\frac{4x}{x+1}+\frac{x+3}{x}=6\)
6, \(\frac{x-1}{x-3}+\frac{2x+2}{x-2}=8\)
7, \(\sqrt{x-1}=\sqrt{2}\)
8, \(\sqrt{2x-1}=\sqrt{x}-4\)
Giải phương trình
1.\(\sqrt{2x-3}-\sqrt{5-2x}=3x^2-12x+14\)
2.\(x^2+2x+15=6\sqrt{4x+5}\)
3.\(x^2-5x-8=2\sqrt{x-2}\)
4.\(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=x+1\)