Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Giải phương trình:
1, \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
2, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
3, \(\sqrt{x^2-4x+3}=x-2\)
4, \(\sqrt{\frac{2x-3}{x-1}}=2\)
5, \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
Cho
TÍnh
\(\sqrt{12-\frac{12}{x^2} }+\sqrt{x^2+\frac{12}{x} }=x^2+\frac{25}{2} \)
\(\frac{\sqrt[3]{10-x}+\sqrt[3]{8-x}}{\sqrt[3]{10-x}-\sqrt[3]{8-x}}=9-x \)
\(4x^2+\sqrt{2x+1}+5=12x\)
Rút gọn biểu thức sau :( chú ý đặt ĐKXĐ trước khi trước khi thực hiện rút gọn)
a,P= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
b, D=\(\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x+1}}+\frac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)
Tìm X để căn thức sau có nghĩa
a) \(\sqrt{1-2x}\) c) \(\sqrt{\frac{4}{5x-3}}\) e)\(\sqrt{1-x^3}\)
b) \(\sqrt{\frac{2}{1-x^2}}\) d) \(\sqrt{\frac{1}{\sqrt[3]{9-x^2}}}\) g) \(\sqrt{4x^2-9}\)
h) \(\sqrt{\frac{5-2x}{x^2+4}}\) i) \(\sqrt[3]{\frac{1-x}{1+x}}\) j) \(\frac{1}{x+\sqrt{x-4}}\)
k) \(\sqrt{\frac{3+x^2}{4-x^2}}\) l) \(\sqrt{\frac{x^2}{1+x}}\)
Tìm ĐKXĐ:
a; \(\sqrt[4]{\frac{2}{-7+3x}}\)
b; \(\sqrt{x-1}+\frac{\sqrt[3]{x+1}}{\sqrt{5-x}}\)
c; \(\sqrt[8]{2x-1}-\sqrt[3]{3-5x}\)
d; \(\sqrt{\frac{3x-6-2x}{\sqrt[3]{1-x}}}\)
tìm x để các biểu thức sau có nghĩa :
a,\(\sqrt{\frac{4-x}{x+1}}\)
b,\(\sqrt{\frac{2x-3}{3x+1}}\)
c,\(\sqrt{x^2-4}+\sqrt{\frac{x-2}{x+1}}\)
d,\(\sqrt{\frac{x^2-9}{x+1}}\)
e,\(\sqrt{2x-1}+\sqrt{x^3-4x^2-4x+16}\)
f,\(\sqrt{2x-1}-\sqrt{2x^3-11x^2+17x-6}\)
g,\(\frac{1}{\sqrt{x+3}+\sqrt{x^2-1}}\)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)