Tìm ĐKXĐ của các biểu thức :
a/ \(\frac{1}{\sqrt{2x-x^2}}\)
b/ \(\frac{1}{\sqrt{x-3}}+\frac{3x}{\sqrt{5-x}}\)
c/ \(\frac{1}{\sqrt{x^2-5x+6}}\)
d/ \(\sqrt{6x-1}+\sqrt{x+3}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Rút gọn biểu thức sau :( chú ý đặt ĐKXĐ trước khi trước khi thực hiện rút gọn)
a,P= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
b, D=\(\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x+1}}+\frac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)
Tìm GTNN
A= x² + 3x - 7
B= x -5\(\sqrt{x}\) -1
C=\(\frac{-4}{\sqrt{x}+7}\)
D= \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
E= \(\frac{x+7}{\sqrt{x}+3}\)
F= \(\frac{x^2+3x+5}{x^2}\)
G= \(\frac{4x+1}{x^2+3}\)
H= \(\sqrt{x^2+2x+5}\)
Tìm GTLN
A = -x² + 4x+3
B = -x² + x + 1
C = 5 - 3x +\(\sqrt{x}\)
D = \(\frac{7}{\sqrt{x}+3}\)
E = \(\frac{\sqrt{x}+6}{\sqrt{x}+1}\)
F = \(\frac{11}{x+3\sqrt{x}+7}\)
1.a) Rút gọn: \(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\)
b) \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
2. Giải phương trình:
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b) \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
c) \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
d) \(\sqrt{\left(1+x^2\right)^3}-4x^3=1-3x^4\)
Tìm điều kiện xác định:
a) \(\sqrt{-2x+3}\)
b) \(\sqrt{\frac{2}{x^2}}\)
c) \(\sqrt{\frac{4}{x+3}}\)
d) \(\sqrt{\frac{-5}{x^2+6}}\)
e) \(\sqrt{3x+4}\)
f) \(\sqrt{1+x^2}\)
g) \(\sqrt{\frac{3}{1-2x}}\)
h) \(\sqrt{\frac{-3}{3x+5}}\)
Giải phương trình
1.\(\sqrt{2x-3}-\sqrt{5-2x}=3x^2-12x+14\)
2.\(x^2+2x+15=6\sqrt{4x+5}\)
3.\(x^2-5x-8=2\sqrt{x-2}\)
4.\(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=x+1\)
tìm x để các biểu thức sau có nghĩa :
a,\(\sqrt{\frac{4-x}{x+1}}\)
b,\(\sqrt{\frac{2x-3}{3x+1}}\)
c,\(\sqrt{x^2-4}+\sqrt{\frac{x-2}{x+1}}\)
d,\(\sqrt{\frac{x^2-9}{x+1}}\)
e,\(\sqrt{2x-1}+\sqrt{x^3-4x^2-4x+16}\)
f,\(\sqrt{2x-1}-\sqrt{2x^3-11x^2+17x-6}\)
g,\(\frac{1}{\sqrt{x+3}+\sqrt{x^2-1}}\)