Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUX NA
Xem chi tiết
VUX NA
18 tháng 8 2021 lúc 18:42

các bn ơi giúp mình với

 

Diệu Ngọc
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:09

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

loancute
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:07

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)

TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)

TH2: ... tương tự

Miko
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:41

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=xy+3y-1\\\left(x+y\right)\left(x^2+1\right)=x^2+y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+\left(x-3\right)y+x^2+1=0\\x^3+x+x^2y-x^2-1=0\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow y^2-\left(x^2-x+3\right)y-x^3+2x^2-x+2=0\)

\(\Delta=\left(x^2-x+3\right)^2-4\left(-x^3+2x^2-x+2\right)=\left(x^2+x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{x^2-x+3+x^2+x-1}{2}=x^2+1\\y=\dfrac{x^2-x+3-x^2-x+1}{2}=-x+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\left[{}\begin{matrix}x+x^2+1=2\\x-x+2=\dfrac{x^2+1-x+2}{x^2+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 20:19

Trừ vế cho vế:

\(x^2+xy-3x-y=-2\)

\(\Leftrightarrow x^2+\left(y-3\right)x-y+2=0\)

\(\Delta=\left(y-3\right)^2-4\left(-y+2\right)=\left(y-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-y+3+y-1}{2}=1\\x=\dfrac{-y+3-y+1}{2}=-y+2\end{matrix}\right.\)

\(\Rightarrow...\)

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 12:40

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Trần Việt Khoa
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:40

- Với \(x=0\) không phải nghiệm

- Với \(x\ne0\):

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{y^2+1}{x}=2\\\left(x+y\right)^2-2\left(\dfrac{y^2+1}{x}\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\\dfrac{y^2+1}{x}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\u^2-2v=-1\end{matrix}\right.\)

\(\Rightarrow u^2-2\left(2-u\right)=-1\)

\(\Leftrightarrow u^2+2u-3=0\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=1\\u=-3\Rightarrow v=5\end{matrix}\right.\)

\(\Rightarrow\) ... (bạn tự thế vào giải tiếp)

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2021 lúc 0:03

\(\left\{{}\begin{matrix}1=x^2+\left(y+1\right)^2-x\left(y+1\right)\\2x^3=x+y+1\end{matrix}\right.\)

Nhân vế:

\(\Rightarrow2x^3=\left(x+y+1\right)\left[x^2+\left(y+1\right)^2-x\left(y+1\right)\right]\)

\(\Rightarrow2x^3=x^3+\left(y+1\right)^3\)

\(\Rightarrow x^3=\left(y+1\right)^3\)

\(\Rightarrow x=y+1\)

Thế vào pt đầu sẽ được 1 pt bậc 2 một ẩn

ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2021 lúc 13:52

\(x+y+xy+1=0\)

\(\Leftrightarrow x\left(y+1\right)+y+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)

Thế xuống pt dưới...

Khiêm Nguyễn Gia
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:40

Lời giải:

Trừ 2 PT theo vế ta có:

$x^2y-xy^2=y^2-x^2$

$\Leftrightarrow x^2y-xy^2+x^2-y^2=0$

$\Leftrightarrow xy(x-y)+(x-y)(x+y)=0$

$\Leftrightarrow (x-y)(xy+x+y)=0$

$\Rightarrow x-y=0$ hoặc $xy+x+y=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT(1):

$x^3+2=x^2$

$\Leftrightarrow (x+1)(x^2-2x+2)=0$

$\Leftrightarrow (x+1)[(x-1)^2+1]=0$

Hiển nhiên $(x-1)^2+1>0$ nên $x+1=0$

$\Leftrightarrow x=-1$. Vậy $(x,y)=(-1,-1)$

Nếu $xy+x+y=0$

$\Leftrightarrow xy=-(x+y)$. Thay vào pt(1):

$x(-x-y)+2=y^2$
$\Leftrightarrow 2=x^2+xy+y^2=(x+y)^2-xy=(x+y)^2+(x+y)$

$\Leftrightarrow (x+y)^2+(x+y)-2=0$
$\Leftrightarrow (x+y-1)(x+y+2)=0$

$\Rightarrow x+y=1$ hoặc $x+y=-2$
Nếu $x+y=1$ thì $xy=-1$. Theo định lý Viet thì $x,y$ là nghiệm của $T^2-T-1=0$

$\Rightarrow (x,y)=(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2})$ và hoán vị 

Nếu $x+y=-2$ thì $xy=2$. Theo định lý Viet thì $x,y$ là nghiệm của pt $T^2+2T+2=0$

Hiển nhiên pt này vô nghiệm nên loại

Vậy...........