cho x+y+z=0 Cm (y+z)/x + (x+z)/y +(x+y)/z +3=0
Cho x/(y-z)+y/(z-x)+z/(x-y)=0 cm x/(y-z)^2+y/(z-x)^2+z/(x-y)^2=0
3. Cup x,y,z >0 thỏa mãn x+y+z < hoặc bằng 6. Cm
1/x + 1/y + 1/z > hoặc bằng 3/2
4. Cho x,y,z >0. Cm
x/y + y/z + z/x > hoặc bằng 3
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
cho x,y,z >0 Cm x^3/y^3+y^3/z^3+z^3/x^3>= x^2/y^2+y^2/z^2+z^2/x^2
cho 3 số x, y, z khác 0 và x+y+z khác 0 thỏa mãn: (y+z-2x)/x=(z+x-2y)/y=(x+y-2z)/z
Hãy cm: A=[1+x/y]×[1+y/z]×[1+z/x] thuộc N
cho x+y+z=0 . cm :x3+x2z+y2z-xyz+y3=0
A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D
Cho x,y,z > 0 cm: a. ( x+y)*(y+z)*(z+x)>= 8xyz
b. Cm : yz/x + zx/y +xy/z >= x+y+z
cho x,y,z >0 va x+y+z=3 Cm \(\frac{^{x^2}}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
cho x,y,z>0 va x*y*z=1
cm: (x+y)*(y+z)*(z+x)\(\ge\frac{8}{3}\cdot\left(x+y+z\right)\)
Lời giải:
Để ý rằng \((x+y)(y+z)(z+x)=(x+y+z)(xy+yz+xz)-xyz\)
Áp dụng BĐT AM-GM thì \((x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(xy+yz+xz)(x+y+z)\)
Mặt khác, dùng AM-GM dễ thấy rằng \(xy+yz+xz\geq\sqrt[3]{(xyz)^2}=3\)
Do đó \(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{3}(xy+yz+xz)(x+y+z)\)
Dấu $=$ xảy ra khi $x=y=z=1$
cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\(cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\)