Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
H.Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:41

a: Xét tứ giác AECD có

O là trung điểm của AC

O là trung điểm của ED

Do đó: AECD là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên AECD là hình chữ nhật

Khổng Anh Tuấn
Xem chi tiết
LT丶Hằng㊰
29 tháng 11 2020 lúc 20:44

A B C D K I O E

* Giả thiết kết luận bạn tự trình bày nhé

a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật

b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD 

=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE

c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD

\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)

d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang 

Để AKDE là hình thang cân thì KD = AE

Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)

\(\Rightarrow\Delta ABC\)là tam giác đều

Khách vãng lai đã xóa
Bảo Ngọc Hoàng
Xem chi tiết
hdkjhsfkfdj
Xem chi tiết

Sửa đề: E đối xứng D qua điểm O

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\widehat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b: Ta có: ADCE là hình chữ nhật

=>AE//CD và AE=CD

Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

=>DB=DC

Ta có: AE//DC

D\(\in\)BC

Do đó: AE//DB

Ta có: AE=DC

DC=DB

Do đó: AE=DB

Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

=>AD cắt EB tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của EB

 

Minh Thuy Bui
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 10:30

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

Minh Thuy Bui
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 10:30

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

Vũ Thị Minh Ánh
19 tháng 12 2022 lúc 10:43

a) Tứ giác ADCE có: O là trung điểm của AC, O là trung điểm của BD

nên tứ giác ADCE là hình bình hành

Có \(\widehat{ADC}=90^\circ\)

Vậy tứ giác ADCE là hình chữ nhật.

b) AECD là hình chữ nhật \(\Rightarrow AE=DC\), AE // DC

Tam giác ABC cân tại A có AD là đường cao

\(\Rightarrow\) AD là đường trung tuyến của tam giác ABC

\(\Rightarrow\) D là trung điểm của BC \(\Rightarrow BD=DC=\dfrac{1}{2}BC\)

Xét tứ giác AEDB có: \(AE=BD\), AE // BD

Vậy tứ giác AEBD là hình bình hành.

c) Tam giác ADC vuông tại D: \(AC^2=AD^2+DC^2\) (Định lí Pi-ta-go)

\(AD=\sqrt{AC^2-DC^2}=\sqrt{10^2-6^2}=8\) (cm)

\(S_{OAD}=\dfrac{1}{2}S_{ADC}=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot8\cdot6=12\) (cm2).

d) Tam giác ADC có: O là trung điểm của AC, I là trung điểm của AD

nên OI là đường trung bình của tam giác ADC

\(\Rightarrow\) OI // BC.

Tam giác ABC có: OK // BC, O là trung điểm của AC

\(\Rightarrow\) K là trung điểm của AB.

Tam giác ABC: O là trung điểm của AC, K là trung điểm của AB

nên OK là đường trung bình của tam giác ABC

\(\Rightarrow OK=\dfrac{1}{2}BC\)

Xét tứ giác KOCD: OK = DC, OK // DC

nên tứ giác KOCD là hình bình hành

\(\Rightarrow\) KD = OC

\(\Rightarrow KD=\dfrac{1}{2}AC\)

\(AE=DC=\dfrac{1}{2}BC\)

Để AE = DK thì AC = BC

Tam giác ABC có AC = AB = BC nên tam giác ABC đều

Vậy tam giác ABC đều thì AE = DK.

Mon an
Xem chi tiết
Nguyễn thị thúy Quỳnh
9 tháng 12 2023 lúc 21:26

a) Ta có tam giác ABC cân tại A, nên đường cao AD cắt AB thành trung điểm D. Gọi O là trung điểm của AC. Khi đó, ta có đường thẳng EO là đường đối xứng của đường thẳng AD qua O. Vì vậy, tứ giác AECD là tứ giác đối xứng.

 

b) Gọi I là trung điểm của AD. Ta cần chứng minh rằng I là trung điểm của BE.

Vì tứ giác AECD là tứ giác đối xứng, nên ta có AO // DE và AO = DE.

Vì O là trung điểm của AC, nên ta có BO // DE và BO = DE.

Do đó, tứ giác BODE là hình bình hành.

Vì I là trung điểm của AD, nên ta có AI = ID.

Vì tứ giác BODE là hình bình hành, nên ta có BO = DE = AI.

Vậy, ta có AI = BO, tức là I là trung điểm của BE.

Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 21:27

loading...

loading...

Huyền Nguyễn
Xem chi tiết

A B C D O E I

a) Vì O là trung điểm AC (gt)

O là trung điểm của DE (E đối D qua O)

=> AECD là hình bình hành (dhnb)

\(\widehat{ADC}=90^o\) (AD \(\perp\) BC)

=> AECD là hình chữ nhật (dhnb)

b) Vì AECD là hình chữ nhật (cmt)

=> AE = CD và AE // CD (t/c hbh)

mà DC = BD (D trung điểm BC do AD \(\perp\) BC, \(\Delta\)ABC cân tại A)

do đó: AE // BD (B \(\in\) CD), AE = BD

=> AEDB là hình bình hành (dhnb)

mà I là trung điểm AD (gt)

=> I là trung điểm BE (t/c hbh)

c) Xét \(\Delta\)ABD vuông tại D có:

\(AD^2+BD^2=AB^2\) (ĐL Pi-ta-go)

=> \(AD^2=AB^2-BD^2=10^2-\left(\dfrac{BC}{2}\right)^2=100-36=64\)

=> AD = 8(cm)

Xét \(\Delta\)ADC có: O, I lần lượt là trung điểm của AD và AD

=> OI là đường trung bình \(\Delta\)ADC (ĐN đg TB tam giác)

=> \(OI=\dfrac{DC}{2}=\dfrac{6}{2}=3\)(cm)

và OI // DC mà DC \(\perp\) AD (gt)

=> OI \(\perp\) AD

Xét \(\Delta\)OAD có OI \(\perp\) AD

=> \(S_{OAD}=\dfrac{1}{2}\cdot AD\cdot OI=\dfrac{1}{2}\cdot8\cdot3=12\left(cm^2\right)\)

Sakura Nguyễn
Xem chi tiết