Những câu hỏi liên quan
Pose Black
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2019 lúc 6:09

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

Bình luận (0)
Kaarthik001
26 tháng 1 lúc 18:36

1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):

- Tam giác \(ABF\) và \(ACE\) có:
  + Góc \(A\) chung.
  + Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
  
  Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).

2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:

- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).

3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:

- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.

Bình luận (0)
Lê Đức Mạnh
Xem chi tiết
Lạc Hy
Xem chi tiết
No Name
Xem chi tiết
Nhật Hạ
4 tháng 2 2020 lúc 10:34

A B C F E

   GT   

  △ABC. △ABF đều. △ACE đều

    KL

 BE = CF

Bài giải:

Vì △ABF đều => AB = BF = AF và ABF = AFB = FAB = 60o      (1)

Vì △ACE đều => AC = CE = AE và ACE = AEC = CAE = 60o    (2)

Từ (1) và (2) => FAB = CAE = 60o   

Ta có: FAC = FAB + BAC

           BAE = CAE + BAC

Mà FAB = CAE (cmt)

=> FAC = BAE

Xét △FAC và △BAE

Có: AF = AB (cmt)

    FAC = BAE (cmt)

      AC = AE (cmt)

=> △FAC = △BAE (c.g.c)

=> FC = BE (2 cạnh tương ứng)

Bình luận (0)
 Khách vãng lai đã xóa
Thơ Trần
Xem chi tiết
An Thy
6 tháng 6 2021 lúc 9:43

1) Gọi G là trung điểm AH

Ta có: \(\angle AFH+\angle AEH=90+90=180\Rightarrow AEHF\) nội tiếp

Tương tự \(\Rightarrow CDHE,AFDC\) nội tiếp

Vì \(\Delta AFH\) vuông tại F có G là trung điểm AH \(\Rightarrow GA=GH=GF\)

Tương tự \(\Rightarrow GE=GA=GH\Rightarrow GE=GF=GA=GH\)

\(\Rightarrow G\) là tâm (AEHF)

Ta có: \(\angle FEH=\angle FAH=\angle FCD=\angle HED\)

\(\Rightarrow\angle FED=2\angle FEH=2\angle FAH=\angle FGD\Rightarrow FGED\) nội tiếp

\(\Rightarrow\left(S\right)\) đi qua trung điểm AH

2) EFMN nội tiếp \(\Rightarrow\angle FNM=\angle FEM=\angle FCB\) (BCEF nội tiếp)

\(\Rightarrow MN\parallel BC\) mà \(BC\bot AD\Rightarrow MN\bot AD\)

MDEG nội tiếp \(\Rightarrow\angle MDG=\angle MEG=\angle HEG=\angle GHE=\angle MHD\)

\(\Rightarrow\Delta MHD\) cân tại M có \(MN\bot HD\Rightarrow MN\) là trung trực HD

mà \(T\in MN\Rightarrow\angle MHT=\angle MDT=\angle MED=\angle FEM\)

\(\Rightarrow HT\parallel EF\)

 undefined

 

Bình luận (0)
Nguyễn Thị Thanh Trúc
Xem chi tiết
Nguyễn Khang
8 tháng 9 2019 lúc 19:38

A B C H K D E F M

Em tài trợ cái hình cho mọi người dễ nhìn ạ!

Bình luận (0)
Nguyễn Khang
8 tháng 9 2019 lúc 19:41

à, cái chỗ đoạn thẳng H, A, D là đường đứt khúc ạ, em quên sửa!

Bình luận (0)
Nguyễn Khang
8 tháng 9 2019 lúc 19:42

ý em là: đoạn thẳng nối H, A và D là đường đứt khúc!

Bình luận (0)
thanh thư xinh gái😘😘
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:15

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

Bình luận (0)
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:22

Các bài còn lại em tách ra nhé.

Bình luận (0)