Cho x,y>0 và x+y>=6.Tìm GTNN của biểu thức:
P=5x + 3y + 12/x + 16/y.
Mong mn giải hộ em!!!!
tìm giá trị nhỏ nhất của biểu thức
A= 5x + 3y + 12/x + 16/y (với x,y>0 và x+y>=6)
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)
Vậy GTNN của x là 6 - y.
Thay 6 - y vào biểu thức đã rút gọn có:
\(A=-2y^3+42y^2-176y-96\)
Giả sử y = 0, ,=> P = -232
Do y > 0 nên P > -232
Vậy: \(Min_P=-232\)
Ta có : \(x+y\ge6\Rightarrow x\ge6-y\\ \)
Vậy GTNN của x là 6-y
Thay \(6-y\) vào biểu thức đã rút gọn có :
\(A=-2y^3+42y^2-176y-96\\ \)
Giả sử \(y=0\Rightarrow P=-232\)
Do \(y>0\) nên \(P>-232\)
Vậy Min \(P=-232\)
Tìm GTNN của D=5x+3y+\(\frac{12}{x}+\frac{16}{y}\) (x,y>0 và x+y\(\ge\)6)
Áp dụng bất đẳng thức \(AM-GM\) đối với từng bộ số trong \(D\) ta có:
\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy, GTNN của \(D\) là \(32\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Cho x>0, y>0 và x+y \(\ge\)6
Tìm giá trị lớn nhất của biểu thức:
\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
Tìm GTNN của D= 5x+3y+\(\frac{12}{x}+\frac{16}{y}\) (x,y>0 và x+y\(\ge\) 6)
Cho x >0; y>0; x + y > 6 Tìm GTNN của P = 5x + 3y + \(\dfrac{12}{x}+\dfrac{16}{y}\)
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6. tìm GTNN của biểu thức P= 5x+3y+12/x+16/y
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
làm bừa thui,ai tích mình mình tích lại
số dư lớn nhất bé hơn 175 là 174
số nhỏ nhất có 4 chữ số là 1000
Mà 1000:175=5( dư 125)
số đó là:
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6.
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
Cho x,y>0,x+y\(\ge\)6.Tìm GTNN của biểu thức:P=5x+3y+\(\frac{12}{x}\)+\(\frac{12}{y}\)
Cho x > 0 , y > 0 và x + y \(^{\ge}\) 6
Tìm GTNN của P = 5x + 3y + \(\dfrac{12}{x}\) + \(\dfrac{16}{y}\)
\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
\(P=3x+\dfrac{12}{x+y}+\dfrac{16}{y}+2.\left(x+y\right)\)
Áp dụng BĐT Cauchy ta có:
\(3x+\dfrac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\)
\(y+\dfrac{16}{y}\ge8\)
Lại có: \(2\left(x+y\right)\ge2.6=12\)
\(\Rightarrow P\ge12+8+12=32\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)
\(\Rightarrow x=2;y=4\)
Vậy \(P_{Min}=32\Leftrightarrow\left[{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)
AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)
cho x,y là hai số thỏa mãn đồng thời x>=0,y>=0,2x+3y<=6 và 2x+y<=4
Tìm GTNN Và GTLN của biểu thức K=x^2 -2x-y
mk co nen nghe ban than da tung phan boi mk ko...