Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Công
Xem chi tiết
Buddy
Xem chi tiết
Mai Trung Hải Phong
26 tháng 8 2023 lúc 8:38

Ta có:

\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)

\(\Rightarrow B\)

 

Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 13:43

Chọn B

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 13:43

Chọn C

Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:26

Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).

Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).

Chọn C.

Nguyễn thị Phụng
Xem chi tiết
Lu Lu
20 tháng 12 2019 lúc 20:52

B

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:01

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:01

a)    Xét:

  \(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 1 - 3}}{{n + 1 + 2}} - \frac{{n - 3}}{{n + 2}}\\ = \frac{{n - 2}}{{n + 3}} - \frac{{n - 3}}{{n + 2}} = \frac{{{n^2} - 4 - {n^2} + 9}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\\ = \frac{5}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)  

=> Dãy số là dãy số tăng

b)    Xét:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} - \frac{{{3^n}}}{{{2^n}.n!}}\\ = \frac{{{3^{n + 1}}}}{{{{2.2}^n}.n!.\left( {n + 1} \right)}} - \frac{{{3^n}}}{{{2^n}.n!}}\\ = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} - \frac{{{3^n}.2\left( {n + 1} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}}\\ = \frac{{{3^n}\left( {3 - 2n - 2} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} = \frac{{{3^n}\left( { - 2n + 1} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} < 0\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)

 => Dãy số là dãy số giảm

c)    Xét:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = {\left( { - 1} \right)^{n + 1}}.\left( {{2^{n + 1}} + 1} \right) - {\left( { - 1} \right)^n}.\left( {{2^n} + 1} \right)\\ = {\left( { - 1} \right)^n}\left[ {\left( { - 1} \right).\left( {{2^{n + 1}} + 1} \right) - {2^n} - 1} \right]\\ = {\left( { - 1} \right)^n}\left( { - {2^{n + 1}} - 1 - {2^n} - 1} \right)\\ = {\left( { - 1} \right)^n}\left( { - {{3.2}^n} - 2} \right)\end{array}\)

=> Dãy số không tăng không giảm.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 21:36

a) Ta có: \({u_{n + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 1 + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}} - \frac{{{n^2}}}{{n + 1}} = \frac{{{{\left( {n + 1} \right)}^3} - {n^2}\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{{n^3} + 3{n^2} + 3n + 1 - {n^3} - 2{n^2}}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\)

\( = \frac{{{n^2} + 3n + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\) với mọi n ∈ ℕ*.

Vì vậy dãy số đã cho là dãy số tăng.

b) Ta có: \({u_{n + 1}} = \frac{2}{{{5^{n + 1}}}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{2}{{{5^{n + 1}}}} - \frac{2}{{{5^n}}} = - \frac{4}{5}.\frac{2}{{{5^n}}} = - \frac{8}{{{5^{n + 1}}}} < 0\)

Vì vậy dãy số đã cho là dãy số giảm.

A Lan
Xem chi tiết
An Khanh Nguyên
Xem chi tiết
Nguyễn Bá Hùng
8 tháng 8 2022 lúc 17:43

1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)

+) CM \(u_n>2\) (n thuộc N*)

n=1 : u1= 5/2 > 2 (đúng)

Giả sử n=k, uk > 2 (k thuộc N*)

Ta cần CM n = k + 1. Thật vậy ta có:

\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)

Vậy un > 2 (n thuộc N*)        (2)

Từ (1) (2) => un+1 - u> 0, hay un+1 > un

=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)

 

2) \(2u_{n+1}=u^2_n-2u_n+4\)

\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)

\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)

\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)

\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)

\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)

\(=2-\dfrac{1}{u_{n+1}-2}\)

\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)