\(\frac{1}{n^2-1}=\frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)
\(\Rightarrow u_n=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)=\frac{3}{4}-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\frac{3}{4}-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)=\frac{3}{4}-0-0=\frac{3}{4}\)