Ta có \(1-\frac{1}{1+2+3+..+k}=1-\frac{2}{k\left(k+1\right)}=\frac{k^2+k-2}{k\left(k+1\right)}=\frac{\left(k-1\right)\left(k+2\right)}{k\left(k+1\right)}\)
=> \(limS=lim\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(=lim\frac{\left(1.2.3.....\left(n-1\right)\right).\left(4.5.6...\left(n+2\right)\right)}{\left(2.3.4....n\right).\left(3.4.5....\left(n+1\right)\right)}=lim\frac{n+2}{3n}=\frac{1}{3}\)