Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHANNANGAMI
Xem chi tiết
...:v
8 tháng 2 2021 lúc 17:13

\(C=\lim\limits\dfrac{4n^2+n+1-4n^2}{\sqrt{4n^2+n+1}+2n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{4n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{2n}{n}}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

Măm Măm
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2022 lúc 21:59

\(\lim\left(\sqrt{4n^2+5n}-2n\right)=\lim\dfrac{5n}{\sqrt{4n^2+5n}+2n}=\lim\dfrac{5}{\sqrt{4+\dfrac{5}{n}}+2}=\dfrac{5}{\sqrt{4+0}+2}=\dfrac{5}{4}\)

\(\lim\left(\sqrt{2n+1}-\sqrt{n}\right)=\lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=+\infty.\left(\sqrt{2}-1\right)=+\infty\) (do \(\sqrt{2}-1>0\))

Minh Hiếu
13 tháng 2 2022 lúc 22:00

\(a,lim\left(\sqrt{4n^2+5n}-2n\right)\)

\(=limn\left(\sqrt{4+\dfrac{5}{n}}-2\right)=n.0=0\)

\(b,lim\left(\sqrt{2n+1}-\sqrt{n}\right)\)

\(=lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=\sqrt{n}\left(\sqrt{2}-1\right)=+\infty\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 20:37

\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)

\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)

James Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 20:08

\(\lim\limits\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)

\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n^2}}+2-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{2+2}{1+1}=\dfrac{4}{2}=2\)

\(\lim\limits\left[\sqrt{n}\left(\sqrt{n+1}-n\right)\right]\)

\(=\lim\limits\left[\sqrt{n^2+n}-\sqrt{n^3}\right]\)

\(=\lim\limits\dfrac{n^2+n-n^3}{\sqrt{n^2+n}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3}\left(\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1\right)}\)

\(=\lim\limits\dfrac{n\sqrt{n}\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}lim\left(n\sqrt{n}\right)=+\infty\\lim\left(\dfrac{-1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)=-\dfrac{1}{1}=-1< 0\end{matrix}\right.\)

đoàn ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Dương thị bầu
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

títtt
Xem chi tiết
YuanShu
15 tháng 10 2023 lúc 13:05

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 18:22

1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)

\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

Đỗ Thị Thanh Huyền
Xem chi tiết
Hoàng Tử Hà
16 tháng 2 2021 lúc 21:48

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

Đỗ Thị Thanh Huyền
17 tháng 2 2021 lúc 8:05

a) lim \(\left(-3n^3+n^2-1\right)\)

Nguyễn Thị Quỳnh Anh
25 tháng 3 2021 lúc 17:39

minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:37

a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) =  - 2\)

b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}}  = 4\)

c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)

d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)