Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
James Pham

Tính các giới hạn sau:

\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)

\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)

Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 20:08

\(\lim\limits\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)

\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n^2}}+2-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{2+2}{1+1}=\dfrac{4}{2}=2\)

\(\lim\limits\left[\sqrt{n}\left(\sqrt{n+1}-n\right)\right]\)

\(=\lim\limits\left[\sqrt{n^2+n}-\sqrt{n^3}\right]\)

\(=\lim\limits\dfrac{n^2+n-n^3}{\sqrt{n^2+n}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}+\sqrt{n^3}}\)

\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3}\left(\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1\right)}\)

\(=\lim\limits\dfrac{n\sqrt{n}\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}lim\left(n\sqrt{n}\right)=+\infty\\lim\left(\dfrac{-1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)=-\dfrac{1}{1}=-1< 0\end{matrix}\right.\)


Các câu hỏi tương tự
đoàn ngọc hân
Xem chi tiết
Đỗ Thị Thanh Huyền
Xem chi tiết
Julian Edward
Xem chi tiết
Măm Măm
Xem chi tiết
Julian Edward
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết