cho \(a=\sqrt[3]{7+\sqrt{50}},b=\sqrt[3]{7-\sqrt{50}}\) . Hãy CM biểu thức M=a+b và \(N=a^7+b^7\) có giá trị đều là số chẵn
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
Cho \(\sqrt{\dfrac{7+3\sqrt{5}}{2}}=a+b\sqrt{5}\) (a,b ∈ R). Giá trị của biểu thức a + b là:
Ta có:
\(\sqrt{\dfrac{7+3\sqrt{5}}{2}}\)
\(=\sqrt{\dfrac{2\cdot\left(7+3\sqrt{5}\right)}{2\cdot2}}\)
\(=\sqrt{\dfrac{14+6\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot3-3^2}{2^2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{5}+3\right)^2}{2^2}}\)
\(=\dfrac{3+\sqrt{5}}{2}\)
Mà: \(\dfrac{3+\sqrt{5}}{2}=a+b\sqrt{5}\)
Nên: \(\dfrac{3+\sqrt{5}}{2}=\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}=\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}\)
Vậy: \(a=\dfrac{3}{2};b=\dfrac{1}{2}\)
\(\Rightarrow a+b=\dfrac{3}{2}+\dfrac{1}{2}=\dfrac{4}{2}=2\)
\(\sqrt{\dfrac{7+3\sqrt{5}}{2}}=\sqrt{\dfrac{14+6\sqrt{5}}{4}}=\sqrt{\left(\dfrac{3+\sqrt{5}}{2}\right)^2}\)
\(=\dfrac{3+\sqrt{5}}{2}\)
=>a=3/2; b=1/2
a+b=3/2+1/2=2
Bài 1: Cho hai biểu thức \(A=\dfrac{7}{\sqrt{x}+8}\)và \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\) với x\(>\)0 và x\(\ne\)0
a, Tính giá trị của A khi x=25
b, CM: \(B=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
c, Tìm x để biểu thức P= A\(\times\)B có giá trị nguyên
a: Khi x=25 thì \(A=\dfrac{7}{5+8}=\dfrac{7}{13}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{x-9}\)
\(=\dfrac{x+5\sqrt{x}-24}{x-9}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{x-9}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
c: P=A*B
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\cdot\dfrac{7}{\sqrt{x}+8}=\dfrac{7}{\sqrt{x}+3}\)
P là số nguyên
=>căn x+3 thuộc Ư(7)
=>căn x+3=7
=>x=16
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
Biết rằng lim\(\dfrac{\sqrt[3]{an^3+5n^2-7}}{\sqrt{3n^2-n+2}}=b\sqrt{3}+c\) với a,b,c là các tham số. Tính giá trị của biểu thức \(P=\dfrac{a+c}{b^3}\)
Ok, nó là dạng vô cùng/ vô cùng, sử dụng ngắt vô cùng bé bậc thấp
\(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt[3]{an^3+5n^2-7}}{\sqrt{3n^2-n+2}}\)
Ở tử thấy số mũ là 1; ở mẫu số mũ là 1
\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt[3]{an^3+5n^2-7}}{\sqrt{3n^2-n+2}}=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt[3]{a}}{n\sqrt{3}}=\dfrac{\sqrt[3]{a}}{\sqrt{3}}\)
\(\Rightarrow\dfrac{\sqrt[3]{a}}{\sqrt{3}}=b\sqrt{3}+c\)
\(\Leftrightarrow\sqrt[3]{a}.\dfrac{\sqrt{3}}{3}+0=b\sqrt{3}+c\Rightarrow\left\{{}\begin{matrix}c=0\\\dfrac{\sqrt[3]{a}}{3}=b\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{a}{b^3}=\dfrac{a}{\dfrac{a}{27}}=27\)
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.
cho a , b là các số dương thỏa mãn \(\sqrt{a+7}+\sqrt{b+7}=9\).tìm giá thị lớn nhất của biểu thức \(A=\sqrt{a}+\sqrt{b}\)
\(a;b\ge-7\) \(bđt\) \(minicopxki\)
\(\Rightarrow\sqrt{a+7}+\sqrt{b+7}=\sqrt{\sqrt{a}^2+\sqrt{7}^2}+\sqrt{\sqrt{b}^2+\sqrt{7}^2}\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Rightarrow9\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le81-28=53\Rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{53}\)
\(dâu"="xảy\) \(ra\Leftrightarrow a=b=13,25\)
cho hai biểu thức
A = \(\sqrt{63}-\sqrt{28}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
B = \(\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4.\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
rút gọn biểu thức A và B
tìm giá trị của x để giá trị biểu thức B bằng giá trị biểu thức A