\(a;b\ge-7\) \(bđt\) \(minicopxki\)
\(\Rightarrow\sqrt{a+7}+\sqrt{b+7}=\sqrt{\sqrt{a}^2+\sqrt{7}^2}+\sqrt{\sqrt{b}^2+\sqrt{7}^2}\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Rightarrow9\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le81-28=53\Rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{53}\)
\(dâu"="xảy\) \(ra\Leftrightarrow a=b=13,25\)