Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan tuấn anh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Trần Ái Linh
6 tháng 8 2021 lúc 16:34

a, y xác định `<=> 3cos(2x+3) \ne 0`

`<=>cos(2x+3) \ne 0`

`<=>2x+3 \ne π/2+kπ`

`<=>x \ne π/4 -3/2 +k π/2 (k \in ZZ)`

b, y xác định `<=> sin(x/3+π/4) \ne0`

`<=> x/3+π/4 \ne kπ`

`<=> x \ne (-3π)/4+ k3π`

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 16:33

ĐKXĐ: 

a.

\(cos\left(2x+3\right)\ne0\)

\(\Leftrightarrow2x+3\ne\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=-\dfrac{3}{2}+\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

b.

\(sin\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\ne0\)

\(\Leftrightarrow\dfrac{x}{3}+\dfrac{\pi}{4}\ne k\pi\)

\(\Leftrightarrow x\ne-\dfrac{3\pi}{4}+k3\pi\)

Nguyen ANhh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:30

a/ ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

Pt tương đương:

\(\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\2cosx+\sqrt{2}=0\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\cosx=cos\left(\frac{3\pi}{4}\right)\\2x=k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=\frac{3\pi}{4}+k2\pi\left(l\right)\\x=-\frac{3\pi}{4}+k2\pi\left(l\right)\\x=\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x=\frac{k\pi}{2}\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:34

b/

ĐKXĐ: \(x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\Leftrightarrow tan2x.sinx+3sinx-\sqrt{3}tan2x-3\sqrt{3}=0\)

\(\Leftrightarrow sinx\left(tan2x+3\right)-\sqrt{3}\left(tan2x+3\right)=0\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\right)\left(tan2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\sqrt{3}>1\left(vn\right)\\tan2x=-3\end{matrix}\right.\)

\(\Rightarrow2x=arctan\left(-3\right)+k\pi\)

\(\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:38

c/

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x+\frac{3\pi}{4}\right)\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{3\pi}{4}\ne k\pi\\2x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne-\frac{3\pi}{4}+k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

Pt tương đương:

\(cos^22x=sin^2\left(x+\frac{3\pi}{4}\right)\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{3\pi}{2}\right)\)

\(\Leftrightarrow cos4x=-cos\left(2x+\frac{3\pi}{2}\right)=cos\left(2x+\frac{\pi}{2}\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=2x+\frac{\pi}{2}+k2\pi\\4x=-2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:18

a/

\(\Leftrightarrow tan2x=-tan40^0\)

\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)

\(\Rightarrow2x=-40^0+k180^0\)

\(\Rightarrow x=-20^0+k90^0\)

b/

\(\Leftrightarrow tan\left(2x-15^0\right)=1\)

\(\Rightarrow2x-15^0=45^0+k180^0\)

\(\Rightarrow x=30^0+k90^0\)

Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:20

c/

\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Rightarrow60^0-x=-30^0+k180^0\)

\(\Rightarrow x=90^0+k180^0\)

d/

\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)

\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)

\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)

Quốc Minh Trịnh
1 tháng 10 2021 lúc 7:17

=-1

Kuramajiva
Xem chi tiết
Hồng Phúc
8 tháng 2 2022 lúc 14:46

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 9 2021 lúc 17:18

\(\Leftrightarrow cos\left(4x+\dfrac{\pi}{3}\right)=-sin\left(x+\dfrac{\pi}{5}\right)\)

\(\Leftrightarrow cos\left(4x+\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{7\pi}{10}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\dfrac{\pi}{3}=x+\dfrac{7\pi}{10}+k2\pi\\4x+\dfrac{\pi}{3}=-x-\dfrac{7\pi}{10}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{11\pi}{30}+k2\pi\\5x=-\dfrac{31\pi}{30}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11\pi}{90}+\dfrac{k2\pi}{3}\\x=-\dfrac{31\pi}{150}+\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Nam Dam
Xem chi tiết
Hồng Phúc
12 tháng 6 2021 lúc 23:16

ĐK: \(x\ne k\pi\)

\(3tan^2\left(x-\dfrac{\pi}{2}\right)=2.\dfrac{1-sinx}{sinx}\)

\(\Leftrightarrow3cot^2x=\dfrac{2}{sinx}-2\)

\(\Leftrightarrow\dfrac{3}{sin^2x}-3=\dfrac{2}{sinx}-2\)

\(\Leftrightarrow\dfrac{3}{sin^2x}-\dfrac{2}{sinx}-1=0\)

\(\Leftrightarrow\left(\dfrac{1}{sinx}-1\right)\left(\dfrac{3}{sinx}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{sinx}-1=0\\\dfrac{3}{sinx}+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-3\left(l\right)\end{matrix}\right.\)

\(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+\text{k}2\pi\left(tm\right)\)

Vậy phương trihf đã cho có nghiệm \(x=\dfrac{\pi}{2}+\text{k}2\pi\)

Nguyễn Việt Lâm
12 tháng 6 2021 lúc 23:48

ĐKXĐ: \(x\ne k\pi\)

\(3cot^2x=2\left(\dfrac{1-sinx}{sinx}\right)\)

\(\Leftrightarrow\dfrac{3cos^2x}{sin^2x}=2\left(\dfrac{1-sinx}{sinx}\right)\)

\(\Leftrightarrow\dfrac{3\left(1-sinx\right)\left(1+sinx\right)}{sin^2x}-2\left(\dfrac{1-sinx}{sinx}\right)=0\)

\(\Leftrightarrow\left(\dfrac{1-sinx}{sinx}\right)\left(\dfrac{3+3sinx}{sinx}-2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1-sinx}{sinx}\right)\left(\dfrac{3+sinx}{sinx}\right)=0\)

\(\Leftrightarrow sinx=1\)

\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

Ly Po
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 9 2019 lúc 0:17

ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\frac{3sin^2x}{cos^2x}+\frac{3\left(sinx+cosx\right)}{cos^2x}=1+4\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\frac{3sin^2x}{cos^2x}+\frac{3\left(sinx+cosx\right)}{cos^2x}=1+4\left(sinx+cosx\right)\)

\(\Leftrightarrow\frac{3-3cos^2x}{cos^2x}-1+\frac{3\left(sinx+cosx\right)}{cos^2x}-4\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\frac{3-4cos^2x}{cos^2x}+\left(sinx+cosx\right)\left(\frac{3-4cos^2x}{cos^2x}\right)=0\)

\(\Leftrightarrow\left(\frac{3-4cos^2x}{cos^2x}\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-4cos^2x=0\\sinx+cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\frac{3}{4}\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\cosx=\frac{-\sqrt{3}}{2}\\sin\left(x+\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)