Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cát Anh
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
phan tuấn anh
29 tháng 1 2016 lúc 21:53

CÁI BÀI NÀY CÂU HỎI LÀ LÀM GÌ VẬY ĐỌC KO HỈU LẮM

nguyễn thị thảo vân
29 tháng 1 2016 lúc 21:56

phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi

Trần Đức Thắng
29 tháng 1 2016 lúc 22:08

x1 là nghiệm pt 

=> \(ax1^2+bx1+c=0\)

<=> \(a+b\cdot\frac{1}{x1}+c\cdot\left(\frac{1}{x1}\right)^2=0\Leftrightarrow ct1^2+bt1+a=0\) ( t1 = 1/x1) 

Xet \(x1+t1=x1+\frac{1}{x1}\ge2\) ( BĐT cô - si , x1 > 0 ) 

Di Nại
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
Đặng Anh Huy 20141919
30 tháng 1 2016 lúc 2:52

Hỏi đáp Toán

Nhật Minh
30 tháng 1 2016 lúc 9:04

\(PT:ax^2+bx+c=0\) (1) có 2 nghiệm pb  có dúng 1 nghiệm dương(x1)  => ac<0 ; \(\sqrt{\Delta}=b^2-4ac>0\)

\(PT:ct^2+bt+a=0\) (2) có ac<0 => \(\sqrt{\Delta}=b^2-4ac>0\) (theo trên) => (2) cũng có 2 nghiệm pb ,trái dấu ( 1 dương = t1 )

ta có :  x1>0 ; t1 >0  nên : 

          +   \(x_1.t_1=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa>0;c<0\right)\)

           +  \(x_1.t_1=\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa<0;c>0\right)\)

=> \(x_1+t_1\ge2\sqrt{x_1.t_1}=2\)

tranvinhhung
12 tháng 10 2017 lúc 20:35

C

nguyễn thị thảo vân
Xem chi tiết
Trần Đức Thắng
30 tháng 1 2016 lúc 22:52

Vì x1 là nghiệm của pt => \(ax1^2+bx1+c=0\)

Do x1 > 0 . chia cả hai vế cho x1^2 ta đc pt:

\(a+b\cdot\left(\frac{1}{x1}\right)+c\left(\frac{1}{x1}\right)^2=0\) => \(\frac{1}{x1}\) là nghiệm của pt (2)

=> \(x3=\frac{1}{x1}\) (1)

CMTT x4 = 1/x2 (2)

Vì pt (1) có 2 n* nguyên dương x1 ; x2 => pt (2) cũng có hai nghiệm nguyên dương x3 ; x4 

Xét \(x1+x2+x3+x4=x1+x2+\frac{1}{x1}+\frac{1}{x2}=\left(x1+\frac{1}{x1}\right)+\left(x2+\frac{1}{x2}\right)\ge4\) ( BĐT cô si )

 

 

Nguyễn Nhật Minh
30 tháng 1 2016 lúc 22:57

(1) (2) có delta như nhau.

\(x_1.x_2.x_3.x_4=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{\left(4ac\right)^2}{16a^2c^2}=1\)

Cô si 4 số dương => KL...

 

HOANGTRUNGKIEN
31 tháng 1 2016 lúc 7:37

\(y=\frac{1}{x^2+\sqrt{x}}\sqrt[6\int^0_{7^{3\left(6\right)}}]{8}890\sqrt[3]{9}\)

Bùi Đức Anh
Xem chi tiết
Nguyễn Cát Anh
Xem chi tiết
minh mọt sách
12 tháng 5 2015 lúc 13:25

vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0

ta có g(1)=c*12+b*1+a=a+b+c=0

vậy 1 là 1 nghiệm của g(x)

Cao Chu Thiên Trang
Xem chi tiết
Trần Thanh Phương
8 tháng 5 2020 lúc 19:00

Theo định lý Viéte kết hợp với giả thiết ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab< 0\\ac>0\end{matrix}\right.\)

Ta cần chứng minh: \(\left\{{}\begin{matrix}x_3+x_4=\frac{-b}{c}>0\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}bc< 0\\ac>0\end{matrix}\right.\) (*)

TH1: \(a>0\Leftrightarrow\left\{{}\begin{matrix}c>0\\b< 0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

TH2: \(a< 0\Leftrightarrow\left\{{}\begin{matrix}c< 0\\b>0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

Ta có đpcm.

Áp dụng BĐT Cauchy:

\(x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}=4\sqrt[4]{\frac{c}{a}\cdot\frac{a}{c}}=4\)

Dấu "=" xảy ra khi \(x_1=x_2=x_3=x_4\) \(\Leftrightarrow a=c\)

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:56

\(ax^2+bx+c=0\) (1) có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

Xét \(cx^2+bx+a=0\) (2)

\(\Delta=b^2-4ac\ge0\Rightarrow\left(2\right)\) có 2 nghiệm

\(\left\{{}\begin{matrix}x_3+x_4=-\frac{b}{c}\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow\left(-\frac{b}{a}\right):\left(\frac{c}{a}\right)>0\Rightarrow-\frac{b}{c}>0\)

\(\Rightarrow\) (2) cũng có 2 nghiệm dương

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow a;c\) cùng dấu và trái dấu b

Ko mất tính tổng quát, giả sử \(a;c>0\)\(b< 0\) ; đặt \(d=-b>0\)

\(\Rightarrow d^2\ge4ac\Rightarrow d\ge2\sqrt{ac}\)

\(A=x_1+x_2+x_3+x_4=-\frac{b}{a}-\frac{b}{c}=\frac{d}{a}+\frac{d}{c}=d\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(A\ge2d\sqrt{\frac{1}{ac}}\ge2.2\sqrt{ac}.\sqrt{\frac{1}{ac}}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=c=\frac{1}{2}d\) hay \(a=c=-\frac{1}{2}b\)

Huyền^^
Xem chi tiết
(:!Tổng Phước Ru!:)
14 tháng 5 2022 lúc 16:33

gấp nịt ;-

Thám tử Trung học Kudo S...
14 tháng 5 2022 lúc 16:33

bài nào:)?

(っ◔◡◔)っ ♥ Kiera ♥
14 tháng 5 2022 lúc 16:33

lỗi