nhìn vào thấy bài khá khó đấy
nhìn vào thấy bài khá khó đấy
1) Tìm điều kiện để
a) ax\(^2\)+bx+c > 0 \(\forall\)x\(\in\)R
b) ax\(^2\)+bx+c < 0
c) ax\(^2\)+bx+c \(\ge\)0
d) ax\(^2\)+bx+c \(\le\)0
Cho a,b,c>0. CMR
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
Cho pt \(a^4+ax^3+bx^2cx+1=0\) có nghiệm. Min của \(P=a^2+b^2+c^2\)
Cho PT: mx2 + 2(m – 1)x + (m – 3) = 0(1). gọi x1, x2 là 2 nghiệm của (1). Có bao nhiêu giá trị m nguyên để (1) thỏa : x1 < 1 < x2
cmr : ∀ a >0, b>0, c>0 ta có \(\dfrac{a}{2a+b}+\dfrac{b}{2b+a}\le\dfrac{2}{3}\)
cho a,b,c > 0. Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho a, b, c dương.
Cmr: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
tìm GTLN
A=\(3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
B=4x(8-5x) với \(0\le x\le\frac{8}{5}\)
C=4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
D=x\(\left(3-\sqrt{3}\right)\) với \(0\le x\le\sqrt{3}\)
Tìm GTNN
A=\(\frac{3x}{2}+\frac{2}{x-1}\) với x>1
B=x+\(\frac{2}{3x-1}\) với x>1/3