Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:30

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Thanh Điền
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2022 lúc 13:21

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 9:13

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

Hồng Phúc
1 tháng 6 2021 lúc 9:23

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

Lâm Tứ Anh
Xem chi tiết
Trinh Phương
21 tháng 10 2021 lúc 18:25

a. cos2x + cos4x + cos6x = 0

\(\Leftrightarrow\left(cos2x+cos6x\right)+cos4x=0\\ \Leftrightarrow2cos4x.cos2x+cos4x=0\\ \Leftrightarrow cos4x\left(2cos2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)}\)

Nguyễn Việt Lâm
23 tháng 10 2021 lúc 20:41

1.

\(cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 10 2021 lúc 20:44

2.

\(\Leftrightarrow1+cos2x+cosx+cos3x=0\)

\(\Leftrightarrow1+2cos^2x-1+2cos2x.cosx=0\)

\(\Leftrightarrow cos^2x+cos2x.cosx=0\)

\(\Leftrightarrow cosx\left(cos2x+cosx\right)=0\)

\(\Leftrightarrow cosx\left(2cos^2x+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

Mai Anh Vũ Trần
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 16:27

\(sin3x-cos3x=\left(3sinx-4sin^3x\right)-\left(4cos^3x-3cosx\right)\)

\(=3\left(sinx+cosx\right)-4\left(sin^3x+cos^3x\right)\)

\(=2\left(sin^3x+cos^3x\right)-6\left(sin^3x+cos^3x\right)+3\left(sinx+cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)-6\left(sinx+cosx\right)\left(1-sinx.cosx\right)+3\left(sinx+cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)-3\left(sinx+cosx\right)\left(1-2sinx.cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)+6sinx.cosx\left(sinx+cosx\right)-3\left(sinx+cosx\right)\)

\(=2\left(sinx+cosx\right)^3-3\left(sinx+cosx\right)\) (đpcm)

Khách vãng lai đã xóa
Quynh Anh
Xem chi tiết
Trần Quốc Lộc
28 tháng 7 2020 lúc 17:30

\(sin3x\left(cosx-sin3x\right)+cos3x\left(sinx-cos3x\right)=0\\ \Leftrightarrow sin3x\cdot cosx+cos3x\cdot sinx=sin^23x+cos^23x\\ \Leftrightarrow sin4x=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 14:02

\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)

\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Thanh Xuan
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 6 2020 lúc 23:32

\(\frac{\left(sin3x+cosx\right)sin3x+\left(cos3x+sinx\right)cos3x}{cos4x}\)

\(=\frac{sin^23x+sin3x.cosx+cos^23x+cos3x.sinx}{cos4x}=\frac{1+sin3x.cosx+cos3x.sinx}{cos4x}\)

\(=\frac{1+sin4x}{cos4x}=\frac{sin^22x+cos^22x+2sin2x.cos2x}{cos^22x-sin^22x}=\frac{\left(cos2x+sin2x\right)^2}{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}\)

\(=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{1+\frac{sin2x}{cos2x}}{1-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)

Như ý
Xem chi tiết