Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên Tiên
Xem chi tiết
Hatsune Miku
Xem chi tiết
Ngô Phương
14 tháng 4 2018 lúc 21:13

Vì phương trình có 2 nghiệm x1;x2 
=> Theo vi-ét ta có 

x+ x= 2(m+1) và x1x= 2m+3 

theo bài ra ta có 

(x1 - x2)2 = 4

<=> x12 - 2x1x+ x22  = 4

<=> x12 + 2x1x+ x22 - 4x1x2 = 4

<=> (x1 + x2)2  - 4x1x2  = 4

<=> 4(m+1)2 - 4(2m+3) = 4

<=> (m+1)2 - (2m+3) = 1

<=> m2 + 2m +1 -2m -3 -1 = 0

<=> m2 - 3 = 0

<=> m2 = 3

<=> m\(=\pm\sqrt{3}\)

Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

nguyễn thị lan hương
Xem chi tiết
tth_new
23 tháng 2 2019 lúc 8:33

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

nguyễn thị lan hương
23 tháng 2 2019 lúc 9:16

ý b kìa ý a mình biết rồi

cao van duc
23 tháng 2 2019 lúc 15:26

b,ta có x1.x2=\(\frac{c}{a}=\frac{m-3}{m+1}\)>0=>\(\orbr{\begin{cases}m< -1\\m>3\end{cases}}\)

theo viet ta có:\(x1+x2=\frac{-b}{a}=\frac{2\left(m-1\right)}{m+1}\)

                      mà x1=2x2

=>\(\hept{\begin{cases}x1=\frac{4\left(m-1\right)}{3\left(m+3\right)}\\x2=\frac{2\left(m-1\right)}{3\left(m+1\right)}\end{cases}}\)

thay vào P=x1.x2=c/a=\(\frac{m-3}{m+1}\)

=>tìm m đối chiếu đk 

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 11:07

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0

=>Phương trình luôn có hai nghiệm

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)

\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)

\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)

\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)

\(\Leftrightarrow4m^2-12m-3=0\)

Đến đây bạn chỉ cần giải pt bậc hai là được rồi

hieu
Xem chi tiết
28 Nhật Quý
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 18:07

loading...  

HAHAHAHA
Xem chi tiết
Trương Huy Hoàng
14 tháng 3 2021 lúc 16:38

Sửa lại đề:

x2 - (3m - 1)x + 2m2 - m = 0

Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)

x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)

Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0

\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1

Vậy m = 1

Chúc bn học tốt!

hue tran
Xem chi tiết