ho pt : \(x^2-2\left(m-1\right)x+2m-3=0\)
Tìm m để pt trên có no x1,x2 tm \(x1^2-2x2=7\)
Các bạn ơi giúp mình bài này nhé.
Cho pt x2+2(m-1)x-2m+5=0
Tìm m để a) pt (1) có 2 no x1,x2 tm x1/x2 + x2/x1=2
b) pt (1) có 2 no x1,x2 tm 2x1+3x2=5
\(x^2-2\left(m+1\right)x+2m+3=0\)0
Tìm m để PT có 2 nghiệm x1 , x2 TM \(\left(x1-x2\right)^2=4\)
Giúp mình với huhu T^T
Vì phương trình có 2 nghiệm x1;x2
=> Theo vi-ét ta có
x1 + x2 = 2(m+1) và x1x2 = 2m+3
theo bài ra ta có
(x1 - x2)2 = 4
<=> x12 - 2x1x2 + x22 = 4
<=> x12 + 2x1x2 + x22 - 4x1x2 = 4
<=> (x1 + x2)2 - 4x1x2 = 4
<=> 4(m+1)2 - 4(2m+3) = 4
<=> (m+1)2 - (2m+3) = 1
<=> m2 + 2m +1 -2m -3 -1 = 0
<=> m2 - 3 = 0
<=> m2 = 3
<=> m\(=\pm\sqrt{3}\)
Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4
cho pt: \(x^3-x^2+2mx-2m=0\left(1\right)\)
a, Tìm m để phương trình có ba nghiệm phân biệt x1,x2,x3 tm: x1+x2+x3=10
b,Tìm m để phương trình có ba nghiệm phân biệt đều lớn hơn hoặc bằng 1.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
cho pt \(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\)
a, cm pt luôn có 2 nghiệm phân biệt với mọi m
b, gọi x1 , x2 là nghiệm của pt , tìm m để x1.x2>0 và x1=2x2
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
b,ta có x1.x2=\(\frac{c}{a}=\frac{m-3}{m+1}\)>0=>\(\orbr{\begin{cases}m< -1\\m>3\end{cases}}\)
theo viet ta có:\(x1+x2=\frac{-b}{a}=\frac{2\left(m-1\right)}{m+1}\)
mà x1=2x2
=>\(\hept{\begin{cases}x1=\frac{4\left(m-1\right)}{3\left(m+3\right)}\\x2=\frac{2\left(m-1\right)}{3\left(m+1\right)}\end{cases}}\)
thay vào P=x1.x2=c/a=\(\frac{m-3}{m+1}\)
=>tìm m đối chiếu đk
cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
Tìm m để pt có 2 nghiệm | x1 - x2|=3
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)
\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)
\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)
\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)
\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)
\(\Leftrightarrow4m^2-12m-3=0\)
Đến đây bạn chỉ cần giải pt bậc hai là được rồi
cho:x^2-(m+1)x+2m-2=0.tìm m để pt có 2 no x1;x2 thỏa mãn:(x1)^2-x2=7
cho pt: x^2-(m-1)x-m^2+m-2=0 tìm m để pt có 2ng pb .
tìm M để Q=\(\left(\dfrac{x1}{x2}\right)^3\)-\(\left(\dfrac{x2}{x1}\right)^3\) lớn nhất
Tìm m để pt:\(x^2-\left(3m-1\right)+2m^2-m=0\) có 2 nghiệm x1, x2 sao cho x1 = x22
Sửa lại đề:
x2 - (3m - 1)x + 2m2 - m = 0
Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0
\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)
x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)
Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0
\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1
Vậy m = 1
Chúc bn học tốt!
cho pt x2 - mx + m -1 =0 ( m là tham số )
cm pt luôn có no với mọi giá trị của m
tìm GTNN của \(A=\frac{x1x2}{x1^2x2+\left(m-1\right)x2}-\frac{x1+x2}{x1x2^2+\left(m-1\right)x1}\)