Bài 12: Cho x – y = -1. Tính giá trị biểu thức: P = 2(x3 – y3) + 3 (x2 + y2)
Cho x+y= 1 tính giá trị biểu thức 2(x3 + y3) - 3( x2 + y2)+100
`2(x^3+y^3)-3(x^2+y^2)+100`
`=2(x+y)(x^2-xy+y^2)-3x^2-3y^2+100`
`=2x^2-2xy+2y^2-3x^2-3y^2+100`
`=-x^2-2xy-y^2+100`
`=-(x+y)^2+100`
`=-1+100=99`
Tính giá trị biểu thức:
a) A = 2 ( x 3 + y 3 ) – 3 ( x 2 + y 2 ) biết x + y = 1;
b) B = x 3 + y 3 + 3xy biết x + y = 1.
Bài 6: Cho biểu thứ M = x2 – 2y + 3xy. Tính giá trị của M khi x = 2, y = 3
Bài 7: Cho biểu thức P = -x2 - 5xy + 8y2 . Tính giá trị của M tại x = -1 và y = -2
Bài 8: Tính giá trị biểu thức
A = 3x3 y + 6x2y2 + 3xy3 tại
B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 6:
M= 2.2 - 2.3+3.2.3
M= 4 - 6 + 18
M= 20
Bài 7:
P= 1.2 - 5.-1.-2 + 8.-2.2
P = 2 -10 -32
P= -44
Bài 8:
A (thiếu dữ kiện bn ơi)
B= -1.2 . 3.2 + -1.3 +3.3 +-1.3
B= -2 . 6 + -3 + 9 +-3
B= -2 . 6 - 3 + 9 - 3
B= -12 - 3 + 9 - 3
B= -9
a)Cho x-y=2,xy=1
Tìm giá trị biểu thức A = x2+y2.
b)Cho x+y=1 . Tính giá trị của biểu thức A = x3 + 3xy + y3.
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Giá trị của biểu thức P = - 2 ( x 3 + y 3 ) + 3 ( x 2 + y 2 ) khi x + y = 1 là
A. P = 3
B. P = 1
C. P = 5
D. P = 0
Ta có
( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ⇔ x 3 + y 3 = ( x + y ) 3 – ( 3 x 2 y + 3 x y 2 ) = ( x + y ) 3 – 3 x y ( x + y )
Và ( x + y ) 2 = x 2 + 2 x y + y 2 ⇔ x 2 + y 2 = ( x + y ) 2 – 2 x y
Khi đó
P = - 2 ( x 3 + y 3 ) + 3 ( x 2 + y 2 ) = - 2 [ ( x + y ) 3 – 3 x y ( x + y ) ] + 3 [ ( x + y ) 2 – 2 x y ]
Vì x + y = 1 nên ta có
P = -2(1 – 3xy) + 3(1 – 2xy)
= -2 + 6xy + 3 – 6xy = 1
Vậy P = 1
Đáp án cần chọn là: B
Tính giá trị của biểu thức
D=x3-y3-3xy biết x-y-1=0
E=x3 + y3 biết x+y=5; x2+y2=17
F=x3-y3 biết x-y=4;x2+y2=26
`#3107.101107`
`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`
Ta có:
`x - y - 1 = 0`
`=> x - y = 1`
`D = x^3 - y^3 - 3xy`
`= (x - y)(x^2 + xy + y^2) - 3xy`
`= 1 * (x^2 + xy + y^2) - 3xy`
`= x^2+ xy + y^2 - 3xy`
`= x^2 - 2xy + y^2`
`= x^2 - 2*x*y + y^2`
`= (x - y)^2`
`= 1^2 = 1`
Vậy, với `x - y = 1` thì `D = 1`
________
`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`
`x + y = 5`
`=> (x + y)^2 = 25`
`=> x^2 + 2xy + y^2 = 25`
`=> 2xy = 25 - (x^2 + y^2)`
`=> 2xy = 25 - 17`
`=> 2xy = 8`
`=> xy = 4`
Ta có:
`E = x^3 + y^3`
`= (x + y)(x^2 - xy + y^2)`
`= 5 * [ (x^2 + y^2) - xy]`
`= 5 * (17 - 4)`
`= 5 * 13`
`= 65`
Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`
________
`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`
Ta có:
`x - y = 4`
`=> (x - y)^2 = 16`
`=> x^2 - 2xy + y^2 = 16`
`=> (x^2 + y^2) - 2xy = 16`
`=> 2xy = (x^2 + y^2) - 16`
`=> 2xy = 26 - 16`
`=> 2xy = 10`
`=> xy = 5`
Ta có:
`F = x^3 - y^3`
`= (x - y)(x^2 + xy + y^2)`
`= 4 * [ (x^2 + y^2) + xy]`
`= 4 * (26 + 5)`
`= 4*31`
`= 124`
Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`
cho 3 số x,y,z thỏa mãn : x+y+z=1; x2+y2+z2=1; x3+y3+z3=1.
tính giá trị biểu thức P= x2008+y2009+x2010
Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)
Ta có: x+y+z=1
nên \(\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
mà 3>0
nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
Thay x=-y vào biểu thức \(x+y+z=1\), ta được:
\(-y+y+z=1\)
hay z=1
Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:
\(\left(-y\right)^2+y^2+1=1\)
\(\Leftrightarrow y^2+y^2=0\)
\(\Leftrightarrow2y^2=0\)
hay y=0
Vì x=-y
và y=0
nên x=0
Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:
\(P=0^{2008}+0^{2009}+1^{2010}=1\)
Vậy: P=1
Bài 3* : Tính giá trị các biểu thức sau:
a) 3x4 + 5x2y2 + 2y4 + y2 biết rằng x2 + y2 = 1
b) 7x - 7y + 4ax - 4ay - 5 biết x - y = 0
c) x3 + xy2 - x2y - y3 + 3 biết x - y = 0
d) x2 + 2xy + y2 - 4x - 4y + 1 biết rằng x + y = 3
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021