Ta có
( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ⇔ x 3 + y 3 = ( x + y ) 3 – ( 3 x 2 y + 3 x y 2 ) = ( x + y ) 3 – 3 x y ( x + y )
Và ( x + y ) 2 = x 2 + 2 x y + y 2 ⇔ x 2 + y 2 = ( x + y ) 2 – 2 x y
Khi đó
P = - 2 ( x 3 + y 3 ) + 3 ( x 2 + y 2 ) = - 2 [ ( x + y ) 3 – 3 x y ( x + y ) ] + 3 [ ( x + y ) 2 – 2 x y ]
Vì x + y = 1 nên ta có
P = -2(1 – 3xy) + 3(1 – 2xy)
= -2 + 6xy + 3 – 6xy = 1
Vậy P = 1
Đáp án cần chọn là: B