CMR : \(lim\frac{a^n}{n!}=0\)
CMR: lim\(\frac{n}{3^n}\)=0
CMR \(lim\dfrac{n^2}{2^n}\)=0
\(2^n=\left(1+1\right)^2=1+C_n^1+C_n^2+C_n^3+...+C_n^n>C_n^3\) (khi n đủ lớn)
\(\Rightarrow2^n>\dfrac{n\left(n-1\right)\left(n-2\right)}{6}\)
\(\Rightarrow\dfrac{n^2}{2^n}< \dfrac{6n^2}{n\left(n-1\right)\left(n-2\right)}=\dfrac{6n}{\left(n-1\right)\left(n-2\right)}\)
Đồng thời do \(\left\{{}\begin{matrix}n^2>0\\2^n>0\end{matrix}\right.\) \(\Rightarrow\dfrac{n^2}{2^n}>0\)
\(\Rightarrow0< \dfrac{n^2}{2^n}< \dfrac{6n}{\left(n-1\right)\left(n-2\right)}\)
Mà \(\lim\left(0\right)=\lim\left(\dfrac{6n}{\left(n-1\right)\left(n-2\right)}\right)=0\)
\(\Rightarrow\lim\left(\dfrac{n^2}{2^n}\right)=0\)
Cho hai dãy số (u\(_n\)) và (v\(_n\)) có:
u\(_n\)=\(\frac{n}{n^2+1}\) và v\(_n\)=\(\frac{ncos\frac{\pi}{n}}{n^2+1}\)
a) Tính lim u\(_n\)
b) cmr: lim v\(_n\)=0
\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)
b/
\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)
Mà \(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)
\(\Rightarrow lim\left(v_n\right)=0\)
Tại sao làm như vậy là sai nhỉ : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{\frac{1}{n}+\frac{2}{n}+...+\frac{1}{n^2}}{1+\frac{1}{n^2}}=\frac{0}{1}=0\)
phải làm theo vầy mới đúng : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{n\left(n+1\right)}{2\left(n^2+1\right)}=\lim\limits_{ }\frac{1+\frac{1}{n}}{2+\frac{1}{n}}=\frac{1}{2}\)
Mình mới học nên ko hiểu lắm, có ai giúp vớiiiiiiiiiii
Chứng minh rằng:
a) \(\lim 0 = 0;\)
b) \(\lim \frac{1}{{\sqrt n }} = 0.\) \(\)
a) Vì \(\left| {{u_n}} \right| = \left| 0 \right| = 0 < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim 0 = 0;\)
b) Vì \(0 < \left| {\frac{1}{{\sqrt n }}} \right| < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim \frac{1}{{\sqrt n }} = 0.\)
\(\lim \frac{{n + 3}}{{{n^2}}}\) bằng:
A. 1.
B. 0.
C. 3.
D. 2.
\(\lim \frac{{n + 3}}{{{n^2}}} = \lim \frac{{{n^2}\left( {\frac{1}{n} + \frac{3}{{{n^2}}}} \right)}}{{{n^2}}} = \lim \left( {\frac{1}{n} + \frac{3}{{{n^2}}}} \right) = 0\)
Chọn B.
Câu 1: lim \(\frac{n+sin2n}{n+5}\)
Câu 2: lim \(\frac{3sinn+4cosn}{n+1}\)
Câu 3: Cho 0<\(\left|a\right|,\left|b\right|\)<1. Khi đó lim \(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\) bằng bao nhiêu ?
Câu 1.
\(y = \dfrac{{n + \sin 2n}}{{n + 5}} = \dfrac{{\dfrac{n}{n} + \dfrac{{\sin 2n}}{n}}}{{\dfrac{n}{n} + \dfrac{5}{n}}} = \dfrac{{1 + \dfrac{{2.\sin 2n}}{{2n}}}}{{1 + \dfrac{5}{n}}}\\ \Rightarrow \lim y = \dfrac{{1 + 0}}{{1 + 0}} = 1 \)
Câu 2.
\(\lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}}\)
Vì \( - 1 \le \sin n \le 1; - 1 \le \cos n \le 1 \Rightarrow \) khi \(x \to \infty \) thì \(3\sin n + 4{\mathop{\rm cosn}\nolimits} = const \)
\(\Rightarrow T = \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} = 0 \)
Chú thích: $const$ là kí hiệu hằng số, giống như dạng giới hạn L/vô cùng.
Câu 3.
\(\lim \dfrac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \lim \dfrac{{\left( {1 + a + {a^2} + ... + {a^n}} \right)\left( {1 - a} \right)\left( {1 - b} \right)}}{{\left( {1 + b + {b^2} + ... + {b^n}} \right)\left( {1 - b} \right)\left( {1 - a} \right)}} = \lim \dfrac{{\left( {1 - {a^{n + 1}}} \right)\left( {1 - b} \right)}}{{\left( {1 - {b^{n + 1}}} \right)\left( {1 - a} \right)}} = \dfrac{{1 - b}}{{1 - a}}\)
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
a) \(\lim\limits3=3\) vì \(3\) là hằng số.
Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).
b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).
Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)
\(\lim \frac{{n - 1}}{{{n^2}}} = \lim \left( {\frac{1}{n} - \frac{1}{{{n^2}}}} \right) = \lim \frac{1}{n} - \lim \frac{1}{{{n^2}}} = 0\)