Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Thụ
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Thien Tu Borum
10 tháng 10 2017 lúc 17:14

\(bài1\)

Cho a/b = c/d,Chứng minh a/(3a + b) = c/(3c + d),Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Trịnh Văn Đại
10 tháng 10 2017 lúc 17:32

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)

Bài 2:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)

Bài 3:

Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)

Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k

x=2k

Lại có xy=96

\(\Rightarrow2k3k=96\)

\(\Rightarrow6k^2=96\)

\(\Rightarrow k=\pm4\)

Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)

\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)

Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:

(x;y)=(8;12)

(x;y)=(-8;-12)

Đặng Nguyễn Quỳnh Nga
Xem chi tiết
Lê Nguyên Hạo
21 tháng 7 2016 lúc 19:04

a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Trần Thu Uyên
21 tháng 7 2016 lúc 19:08

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng dãy tỉ số bằng nhau ta có;

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

=> đpcm

Chúc bạn làm bài tốt

Lê Nguyên Hạo
21 tháng 7 2016 lúc 19:11

b) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (đpcm)

Đào Thị Lê Na
Xem chi tiết
soyeon_Tiểu bàng giải
29 tháng 10 2016 lúc 16:39

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Trang Huyen Trinh
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
Xem chi tiết
Phạm Vân Trường
Xem chi tiết
Vũ Minh Tuấn
30 tháng 12 2019 lúc 21:22

a)

b)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}.\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}.\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
✿✿❑ĐạT̐®ŋɢย❐✿✿
30 tháng 12 2019 lúc 21:29

Đây là gì :

Khách vãng lai đã xóa
Trinh
Xem chi tiết
nguyễn ngọc liên
Xem chi tiết
Lưu Hiền
15 tháng 3 2017 lúc 8:54

bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn

đặt

\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)

\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)

từ 1 và 2

=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)

chúc may mắn