Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Ngọc Phương Thủy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2019 lúc 21:30

\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)

\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)

\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)

\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)

Nguyễn Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 23:54

\(1=\frac{1}{x+y+y}+\frac{1}{y+z+z}+\frac{1}{z+x+x}\)

\(\Rightarrow1\le\frac{1}{9}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{y}+\frac{2}{z}+\frac{1}{z}+\frac{2}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\Rightarrow xy+yz+zx\ge3xyz\)

\(P=\frac{x^2}{x^2+2xyz}+\frac{y^2}{y^2+2xyz}+\frac{z^2}{z^2+2xyz}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6xyz}=\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x^2+y^2+z^2+6xyz}\)

\(\Rightarrow P\ge\frac{x^2+y^2+z^2+6xyz}{x^2+y^2+z^2+6xyz}=1\)

\(P_{min}=1\) khi \(x=y=z=1\)

Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Diệu Huyền
3 tháng 2 2020 lúc 10:48

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
24 tháng 7 2020 lúc 15:22

x(x+1)+y(y+1)+z(z+1) \(\le18\)

<=> \(x^2+y^2+z^2+\left(x+y+z\right)\le18\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow54\ge\left(x+y+z\right)^2+3\left(x+y+z\right)\)

\(\Leftrightarrow-9\le x+y+z\le6\)

\(\Rightarrow0\le x+y+z\le6\)

\(\hept{\begin{cases}\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\\\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\\\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\end{cases}}\Rightarrow B+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)

\(\Rightarrow B\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)

vậy giá trị nhỏ nhất cho B=3/5 khi x=y=z=2

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 7 2020 lúc 14:32

Hai Ngox  Xem laị  từ dòng thứ 2  và dòng thứ 3 xuống dưới. Nhiều lỗi quá!

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 7 2020 lúc 14:36

Cô Chi giúp em với!!!

Khách vãng lai đã xóa
Thu Nguyễn
Xem chi tiết
tth_new
12 tháng 12 2018 lúc 18:01

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

tth_new
12 tháng 12 2018 lúc 18:01

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

tth_new
12 tháng 12 2018 lúc 18:04

À mà để phải là tìm Max mới đúng chứ nhỉ?

Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:

"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1/3

Vậy A max = 3/4 khi x=y=z=1/3

Trần Thị Khánh Ly
Xem chi tiết
Nguyễn Anh Quân
20 tháng 12 2017 lúc 21:23

Bạn ơi đề hình như là tìm GTLN 

Xét x/x+1 < = x/x+x+y+z = x/(x+y)+(x+z)

Áp dụng bđt 1/a+b < = 1/4.(1/a + 1/b) với a,b > 0 thì

x/x+1 < = x/4.(1/x+y + 1/x+z) = 1/4.(x/x+y + x/x+z)

Tương tự : y/y+1 < =  1/4.(y/x+y + y/y+z) ; z/z+! < = 1/4.(z/z+x + z/y+z)

=> M < = 1/4.(x/x+y + y/x+y + y/y+z + z/y+z + z/x+z + x/z+x) = 1/4.(1+1+1) = 3/4

Dấu "=" xảy ra <=> x+y+z = 1 và x=y=z <=> x=y=z=1/3

Vậy GTLN của M = 3/4 <=> x=y=z=1/3

k mk nha

Angela jolie
Xem chi tiết
Diệu Huyền
29 tháng 12 2019 lúc 16:53

Violympic toán 9

Khách vãng lai đã xóa
HHHHH
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
27 tháng 3 2020 lúc 15:29

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

Khách vãng lai đã xóa
Kakarot Songoku
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2020 lúc 22:08

\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)

\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)

\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)