cho cot a = 8/15 tính tan a, cos a và sin a
a. cho sin = 8/17 . Tính cos , tan , cot
b. cho cot = 3/4 . Tính cos , sin , cot
Lớp 9 nên coi như các góc này đều nhọn
a.
\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)
\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)
b.
\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)
\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)
\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)
a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)
\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)
\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a.
\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)
\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)
b.
\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)
c.
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)
\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)
\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)
\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)
a) Biết sin a =\(\dfrac{2}{3}\).Tính cos a,tan a,cot a
b)Biết cos a =\(\dfrac{1}{5}\).Tính sin a, tan a,cot a
c)Biết tan a = 2.Tính sin a,cos a ,cot a.
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
1.tính cos a, tan a, cot a nếu biết a nhọn và sin a =3/5
2. tính sin x, cos x nếu biết x nhọn và tan x=12/35
3. cho góc a nhọn và cos a =5/13.tính sin a, tan a và cot a
giúp mình với gấp lắm rồi mình sẽ tick cho bạn nào giải được. cảm ơn trước nhé
a. cho sin = 8/17 . Tính cos , tan , cot
b. cho cot = 3/4 . Tính cos , sin , cot
a) cos = 15/7
tan = 8/15
cot = 15/8
b) cos = 4/5
tan = 3/5
cot = 4/5
Cho 0< a< π/2 thỏa mãn cot a = 8/15 . Tính sin a, cos a, tan a
Lời giải:
Xét tam giác vuông $ABC$ vuông tại $A$ có $\widehat{B}=a$
$\cot a=\frac{BA}{AC}=\frac{8}{15}\Rightarrow AB=\frac{8}{15}AC$
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{(\frac{8}{15}AC)^2+AC^2}=\frac{17}{15}AC$
Do đó:
$\sin a=\frac{AC}{BC}=\frac{AC}{\frac{17}{15}AC}=\frac{15}{17}$
$\cos a=\frac{AB}{BC}=\frac{\frac{8}{15}AC}{\frac{17}{15}AC}=\frac{8}{17}$
$\tan a=\frac{AC}{AB}=\frac{1}{\cot a}=\frac{15}{8}$
a) Biết sin =9/15 .Tính cos ; tan ; cot?
b) Biết cos =3/5.Tính sin, tan, cot?
c) Biết tan =3/4. Tính cot, sin, cos?
bài này không có giới hạn góc sao tìm được bạn .
Cho góc a = \(135^o\). Hãy tính sin a, cos a, tan a và cot a.
Để tính sin a, cos a, tan a và cot a của góc a = 135°, ta sử dụng các công thức trigonometri cơ bản: 1. Sin a: sin a = sin(135°) = -sin(45°) = -1/√2 ≈ -0.707 2. Cos a: cos a = cos(135°) = -cos(45°) = -1/√2 ≈ -0.707 3. Tan a: tan a = tan(135°) = -tan(45°) = -1 4. Cot a: cot a = 1/tan a = -1/(-1) = 1 Vậy, sin a ≈ -0.707, cos a ≈ -0.707, tan a = -1 và cot a = 1.