Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2020 lúc 22:38

\(y_A-2x_A=2m+1-2m=1\)

\(\Rightarrow y_A=2x_A+1\) với mọi m hay A luôn thuộc đường thẳng cố định \(y=2x+1\)

\(\left\{{}\begin{matrix}x_B^2=m^2\\y_B=2m^2\end{matrix}\right.\) \(\Rightarrow y_B=2x_B^2\Rightarrow\) B luôn thuộc parabol cố định \(y=2x^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2017 lúc 7:56

Đáp án B

Đỗ Tùng
Xem chi tiết
Đỗ Tùng
Xem chi tiết
Dưa Hấu
5 tháng 6 2021 lúc 22:52

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2017 lúc 9:08

:vvv
Xem chi tiết
Đào Thu Hiền
10 tháng 7 2021 lúc 15:56

*TH1: m ≠ -5

Gọi M(xM; yM) là điểm cố định mà (d) đi qua với mọi m 

=> xM; yM thoả mãn phương trình: yM = (m + 5)xM + 2m - 10 ∀m

                                                   ⇔ yM = mxM + 5xM + 2m - 10 ∀m

                                                   ⇔ m(xM + 2) + 5xM - yM - 10 = 0 ∀m

                                                   ⇔ \(\left\{{}\begin{matrix}x_M+2=0\\5x_M-y_M-10=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x_M=-2\\y_M=-20\end{matrix}\right.\)

Vậy M(-2; -20) là điểm cố định mà (d) luôn đi qua với mọi m

=> OM = \(\sqrt{\left(x_O-x_M\right)^2+\left(y_O-y_M\right)^2}\) = \(\sqrt{2^2+20^2}\) = \(2\sqrt{101}\)

Gọi H là chân đường vuông góc hạ từ O xuống (d) => OH ≤ OM (tính chất đường vuông góc và đường xiên)

Vậy với m ≠ -5; khoảng cách lớn nhất từ O đến (d) là \(2\sqrt{101}\)

*TH2: m = -5

Với m = -5 ta có (d): y = 2.(-5) - 10 = -20

=> (d) // Ox và cắt Oy tại điểm có tung độ -20

=> Khoảng cách từ O đến (d) là 20

Ta có: 20 < \(2\sqrt{101}\) => Với m ≠ -5 thì khoảng cách từ O đến (d) là lớn nhất.

Nguyệt Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2023 lúc 7:42

PTHĐGĐ là;
x^2-2mx-3+2m=0

Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8

=(2m-2)^2+8>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

x1^2+x2^2=14

=>(x1+x2)^2-2x1x2=14

=>(2m)^2-2(2m-3)=14

=>4m^2-4m+6-14=0

=>4m^2-4m-8=0

=>m^2-m-2=0

=>(m-2)(m+1)=0

=>m=2 hoặc m=-1

Lê Hà Ny
Xem chi tiết

A(m-1;-1); B(2;2-2m); C(m+3;3)

\(\overrightarrow{AB}=\left(2-m+1;2-2m+1\right)\)

=>\(\overrightarrow{AB}=\left(3-m;3-2m\right)\)

\(\overrightarrow{AC}=\left(m+3-m+1;3+1\right)\)

=>\(\overrightarrow{AC}=\left(4;4\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\)

=>3-m=3-2m

=>m=0

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3-m;3-2m\right)\\\overrightarrow{AC}=\left(4;4\right)\end{matrix}\right.\)

3 điểm A;B;C thẳng hàng khi và chỉ khi \(\overrightarrow{AB}=k\overrightarrow{AC}\) với \(k\ne0\)

Hay \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\Rightarrow m=0\)

Hoa Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2020 lúc 22:10

Theo công thức trọng tâm:

\(\left\{{}\begin{matrix}\frac{0+1+2m+1}{3}=2\\\frac{2+1+m+7}{3}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+2=6\\m+10=12\end{matrix}\right.\) \(\Rightarrow m=2\)