Cho ΔABC có A\(\left(2;5\right)\), B\(\left(6;2\right)\), C\(\left(-1;1\right)\).
a) Tìm tọa độ trực tâm H của ΔABC.
b) Tìm tọa độ điểm K là chân đường cao hạ từ đỉnh A của ΔABC.
Cho ΔABC cân tại A có Â=80 độ.Số đo góc C bằng
A.30 độ
B.40 độ
C.50 độ
D.70 độ
Các biểu thức sau,biểu thức nào là đơn thức
A.\(10x^2y+2\)
B.\(2\left(x+y\right)\)
C.\(2x\left(-\dfrac{1}{3}\right)y^2x\)
D.\(-4xy^2\)
ΔABC cân tại A có góc BÂC bằng 70 độ thì số đo mỗi góc ở đáy của tam giác cân là?
A.110 độ
B.70 đọ
C.60 độ
B.55 độ
Cho \(A\left(5;-8\right);B\left(-3;-2\right);C\left(11;0\right)\)
CMR: ΔABC vuông cân
\(AB=\sqrt{\left(5+3\right)^2+\left(-8+2\right)^2}=10\\ BC=\sqrt{\left(-3-11\right)^2+\left(-2-0\right)^2}=10\sqrt{2}\\ AC=\sqrt{\left(5-11\right)^2+\left(-8-0\right)^2}=10\)
Ta có \(BC^2=AB^2+AC^2\left(200=100+100\right)\) nên TG ABC vuông tại A
Mà \(AB=AC\) nên ABC vuông cân tại A
*CT tổng quát: \(d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)
Cho ΔABC thỏa mãn: \(cos\dfrac{C}{2}.cos\left(A-B\right)+cosC.cos\left(\dfrac{A-B}{2}\right)=0\)
Tính \(sinA+sinB\)
Cho ΔABC có AB=c, BC=a, CA=b, 3 chiều cao tương ứng là ha,hb,hc. CMR: \(\dfrac{\left(a+b+c\right)^2}{h^2_a+h^2_b+h^2_c}\ge4\)
Kẻ Cx//AB và gọi D đối xứng với A qua Cx
\(\Rightarrow CD=AC=b;AD=2h_c\)
Vì Cx//AB nên \(\widehat{BAD}=\widehat{BAC}+\widehat{DAC}=\widehat{ACx}+\widehat{DAC}=90^0\)
Xét 3 điểm B,C,D có \(BD\le BC+CD\)
Xét tg ABD vuông tại A có \(AB^2+AD^2=BD^2\le\left(BC+CD\right)^2\)
\(\Leftrightarrow c^2+4h_c^2\le\left(a+b\right)^2\\ \Leftrightarrow4h_c^2\le\left(a+b\right)^2-c^2\)
Dấu \("="\Leftrightarrow a=b\)
Cmtt \(\Leftrightarrow4h_b^2\le\left(a+c\right)^2-b^2;4h_a^2\le\left(b+c\right)^2-a^2\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2-c^2+\left(a+c\right)^2-b^2+\left(b+c\right)^2-a^2\\ \Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\\ \Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)
Dấu \("="\Leftrightarrow a=b=c\) hay tg ABC đều
Cho ΔABC có diện tích S, BC=a; CA=b
sao cho \(\cot A+\cot B=\dfrac{a^2+b^2}{2S}\)
Chứng minh ΔABC vuông
Từ C kẻ đường cao CH xuống đáy AB
\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)
Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> AB2 = AC2 + BC2
=> tam giác ABC vuông tại C
\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)
Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)
\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo
Cho ΔABC vuông tại A thỏa mãn \(BC^2=\left(\sqrt{3}+1\right).AC^2+\left(\sqrt{3}-1\right).AB.AC\).Tính số đo góc ACB
A.450 B.150 C.600 D.300
Cho ΔABC có trọng tâm G. Tìm tập hợp M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{2MC}\right|=\left|\overrightarrow{AM}-\overrightarrow{AB}\right|\)
Cho ΔABC có AB=2; BC=3;AC=6 a) Tính diện tích ΔABC=? b) Tính độ dài đường trung tuyến kẻ từ C c) Tính bán kính đường tròn ngoại tiếp ΔABC d) Tính số đo góc lớn nhất trong ΔABC.
AB+BC<AC
nên ko có tam giác ABC thỏa mãn nha bạn
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow MG=\dfrac{1}{3}BC\)
Tập hợp M là đường tròn tâm G bán kính \(R=\dfrac{BC}{3}\)