Cho a, b, c là ba số thực dương thỏa mãn ab + bc + ac = 1. Tính
\(P=a\sqrt{\frac{\left(1+c^2\right)\left(1+b^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+c^2\right)\left(1+a^2\right)}{1+c^2}}\)
Cho ΔABC vuông tại A có BC=2AB.Khi đó số đo góc B bằng
A.400 B.600 C.300 D.450
Cho 3 số thưc a,b,c thỏa mãn
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2016\)
Tìm GTNN của
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho 3 số thực dương a;b;c thỏa mãn
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a>0 b>0 c>0 thỏa mãn a+b+c=1 tính gt bt
\(P=\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\frac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
Cho các số a,b,c,d thỏa mãn 0<a,b,c,d<1 tính gtln của;
P=\(\sqrt[3]{abcd}+\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\left(b+c\right)\sqrt[k]{\frac{bc+1}{a^2+1}}+\left(a+c\right)\sqrt[k]{\frac{ac+1}{b^2+1}}+\left(a+b\right)\sqrt[k]{\frac{ab+1}{c^2+1}}\ge6\)
cho các số a,b,c thỏa mãn 0<a,b,c,d<1 tính gtln của bt
P=\(\sqrt[3]{abcd}+\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1
Chứng minh rằng : \(\frac{1}{\sqrt{\left(a^2+ab+b^2\right)\left(b^2+bc+c^2\right)}}+\frac{1}{\sqrt{\left(b^2+bc+c^2\right)\left(c^2+ca+a^2\right)}}+\frac{1}{\sqrt{\left(c^2+ca+a^2\right)\left(a^2+ab+b^2\right)}}\ge4+\frac{8}{\sqrt{3}}\)
Cộng tác viên giúp với !