Giải phương trình ( th1 : m > 1; th2 : m < 1)
\(1=\frac{\left(3-m\right)^2}{2\left|m-1\right|}\)
Các bạn giải hộ mk câu này đi . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Các bạn giải gấp cho mk câu này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Giải phương trình ( th1 : m > 1 ; th2 : m < 1)
\(1=\frac{\left(3-m\right)^2}{2\left|m-1\right|}\)
cho phương trình sau: x² - 2(m+1) -m - 1=0 a, Giải phương trình trên khi m=2 b, không giải phương trình tính giá trị biểu thức c,tìm giá trị nhỏ nhất của phương trình tại m=4
a: Khi m=2 thì pt sẽ là x^2-6x-3=0
=>\(x=3\pm2\sqrt{3}\)
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
Với m = 2 phương trình trở thành
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy......
b) Phương trình có nghiệm là -1
\(\Leftrightarrow\left(m-1\right)+2m+m^2-1=0\)
\(\Leftrightarrow m^2+3m-2=0\)
\(\Delta=3^2-4.1.\left(-2\right)=17>0\)
=> pt có 2 nghiệm pbiet \(\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
a) Thay m=2 vào pt
⇒ (2-1)x2-2 . 2 . x + 22 -1 = 0
⇒ x2- 4x + 3 = 0
⇒ x2- x -3x +3 =0
⇒x(x-1) -3(x-1)=0
⇒(x-1) (x-3) = 0
TH1 : x-1 =0
x= 1
TH2 : x-3 =0
x=3
Vậy x=1 ; x=3
b) Thay x=-1 vào pt
⇒ (m-1) . 1 + 2m + m2 -1 = 0
⇒ m-1 + 2m +m2 -1 = 0
⇒ m2 + 3m -2 = 0
⇒ m2 + \(\dfrac{3-\sqrt{17}}{2}\)m + \(\dfrac{3+\sqrt{17}}{2}\) m -2 =0
⇒ m( m + \(\dfrac{3-\sqrt{17}}{2}\) ) + 2 ( m +\(\dfrac{3-\sqrt{17}}{2}\)) =0
⇒ ( m+2) ( m + \(\dfrac{3-\sqrt{17}}{2}\)) = 0
Sau đó bn giải ra 2 TH là đc nha
Giải phương trình (th1: m > 2 ; th2 : m < 2)
\(3=\frac{9}{2\left|2-m\right|}\)
Các bạn giải giúp mk câu này vs . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
đk: m ≠ 2
TH2 : m < 2 => 2-m > 0
\(3=\frac{9}{2\left|2-m\right|}\)
(=) \(3=\frac{9}{2\left(2-m\right)}\)
(=) 6(2-m) = 9
(=)2-m = 1,5
(=) m = 0,5
TH1 m > 2 => 2-m < 0
\(3=\frac{9}{-2\left(2-m\right)}\)
(=) -6(2-m) = 9
(=) 2-m = -1,5
(=) m = 3,5
Cho phương trình 10x =m+1 (*) giải phương trình (*) khi m=1;m=-1 m=2;m=-2
Khi m=1 thì (*) sẽ là 10x=2
=>x=1/5
Khi m=-1 thì (*) sẽ là 10x=0
=>x=0
Khi m=2 thì (*) sẽ là 10x-3=0
=>x=3/10
Khi m=-2 thì (*) sẽ là 10x=-1
=>x=-1/10
Cho phương trình: \(\dfrac{2x+m}{x}=1+\dfrac{x+1}{x-1}\) (m là tham số)
(+) Giải phương trình với m=1
(+) Tìm nghiệm của phương trình theo m
ĐKXĐ: \(x\notin\left\{0;1\right\}\)
a) Thay m=1 vào phương trình, ta được:
\(\dfrac{2x+1}{x}=1+\dfrac{x+1}{x-1}\)
\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{x-1+x+1}{x-1}\)
\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{2x}{x-1}\)
\(\Leftrightarrow2x^2=\left(2x+1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2=2x^2-2x+x-1\)
\(\Leftrightarrow2x^2-2x^2+2x-x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(loại)
Vậy: Khi m=1 thì \(S=\varnothing\)
Cho phương trình: \(\dfrac{2x+m}{x}=1+\dfrac{x+1}{x-1}\) (m là tham số)
(+) Giải phương trình với m=1
(+) Tìm nghiệm của phương trình theo m