Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Hạ Nhi
Xem chi tiết
CR7 victorious
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 22:26

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)

Chira Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 13:40

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac-4a^2-4b^2-4c^2+4ab+4bc+4ac=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)(đpcm)

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Đức Trí
27 tháng 7 2023 lúc 0:56

Ta có :

\(\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

\(\Rightarrow dpcm\)

Nguyễn Thị Sao Mai
Xem chi tiết
Đinh Đức Hùng
20 tháng 4 2017 lúc 17:22

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\forall a;b;c}\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

Vậy \(a=b=c\)

Le Thi Khanh Huyen
Xem chi tiết
Devil Girl
19 tháng 7 2016 lúc 20:32

\(Ta\)\(có\):\(\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)\(Mà\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)\(=1+2\left(ab+ac+bc\right)=0\Rightarrow2\left(ab+ac+bc\right)=-1\)\(\Rightarrow a^2+b^2+c^2=2\left(ab+bc+ac\right)\)

Devil Girl
19 tháng 7 2016 lúc 20:34

Xl nha dòng cuối mik ghi nhầm

Phài là \(a^4+b^4+c^4=2\left(ab+bc+ac\right)\)

Bé con
Xem chi tiết
Trà My
16 tháng 7 2017 lúc 11:03

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

<=>\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca\)\(=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

<=>\(0=2a^2+2b^2+2c^2-2ab-2bc-2ca\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\)<=> a-b=b-c=c-a <=> a=b=c

Minh Lê Quang Khánh
16 tháng 7 2017 lúc 11:14

vế phải= \(2\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

=\(2\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)

=\(2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

=>\(\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow-1\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Nguyễn Tuấn Kiệt
Xem chi tiết
Chu Tuấn Minh
16 tháng 11 2019 lúc 20:42

Ta có : a + b + c = 0

( a + b + c )\(^2\) = 0

\(a^2+b^2+c^2+2ab+2bc+2ca=0\)

Nên : \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8ab^2c+8abc^2+8a^2bc\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8abc\left(b+c+a\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

Lại có : \(2\left(ab+bc+ca\right)^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4ab^2c+4abc^2+4a^2bc\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4abc\left(b+c+a\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2\)

Vì : \(2a^2b^2+2b^2c^2+2c^2a^2=2a^2b^2+2b^2c^2=2c^2a^2\)

Vậy \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Khách vãng lai đã xóa
Tran VAN VY
Xem chi tiết
NGUYỄN THẾ HIỆP
24 tháng 2 2017 lúc 20:26

a, Có: \(\hept{\begin{cases}\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}=\frac{1}{bc+b+1}\\\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{ac+c+1}\end{cases}}\)

Tương tự cho 2 phân số còn lại sau đó cộng vế theo vế ta được:

\(3S=\frac{ab+a+1}{ab+a+1}+\frac{bc+b+1}{bc+b+1}+\frac{ca+c+1}{ca+c+1}=3\Leftrightarrow S=1\)

2, Chú ý: a+b+c=0 và a+b=-c

Xét: \(A=a^4+b^4+c^4=\left(a^2+b^2\right)^2+c^2-2a^2b^2=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mà: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

\(a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\left(ab+bc+ca\right)^2\)

Vậy thay 2 biểu thức trên vào ta được: ĐPCM

c) Ta có: \(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)

Do x,y>0 => x+y+3>x-y-1

Vậy pt <=> \(\hept{\begin{cases}x-y-1=1\\x+y+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=2\\x+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy (x,y)=(3,1)

Tran VAN VY
23 tháng 2 2017 lúc 16:51

câu a bổ sung : Biểu thức =1