Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chira Nguyên

Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Chứng minh rằng a=b=c

Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 13:40

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac-4a^2-4b^2-4c^2+4ab+4bc+4ac=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)(đpcm)


Các câu hỏi tương tự
Trung Kiên
Xem chi tiết
Amanogawa Kirara
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Thanh Liêm
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Minh Hoang Hai
Xem chi tiết
vvvvvvvv
Xem chi tiết
Tuấn Nguyễn Minh
Xem chi tiết