Ta có:
\(ab+bc+ca=1\)
\(\Rightarrow ab+bc+ca+a^2=a^2+1\)
\(\Rightarrow b\left(a+c\right)+a\left(c+a\right)=a^2+1\)
\(\Rightarrow\left(a+b\right)\left(c+a\right)=a^2+1\)
Tương tự \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(c+a\right)\left(b+c\right)\)
Suy ra: \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+c\right)}\)
\(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)
\(A=1\)