Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tuệ Nga
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 20:12

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)

chi nguyễn khánh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 20:56

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)

\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)

\(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)

Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)

\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:

\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)

\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)

\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 21:01

c/ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)

\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:

\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

\(\Rightarrow x=3\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 21:10

d/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2\sqrt{x^2+x}-4x+\sqrt{x+1}+\sqrt{x}+6x-1=0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đến đây thì nó giống hệt câu a không khác 1 chữ nào

e/ ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow x^2+x+3+2x\sqrt{x+3}+x+\sqrt{x+3}-12=0\)

Đặt \(x+\sqrt{x+3}=a\ge-3\Rightarrow a^2=x^2+x+3+2x\sqrt{x+3}\)

Phương trình trở thành:

\(a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x+\sqrt{x+3}=3\)

\(\Leftrightarrow\sqrt{x+3}=3-x\) (\(x\le3\))

\(\Leftrightarrow x+3=\left(3-x\right)^2\)

\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\left(l\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Mouse
Xem chi tiết
Hải Anh
27 tháng 11 2019 lúc 22:04

a) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)

Đặt \(t=\sqrt{2x+3}+\sqrt{x+1}\left(t\ge0\right)\)

\(\Rightarrow t^2=3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}\)

\(\Rightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=t^2-3x-4\)

Pt <=> \(t=3x+t^2-3x-4-16\)

\(\Leftrightarrow t^2-t-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=21-3x\)

\(\Leftrightarrow x^2-146x+429=0\)

...

Câu b giải tương tự

Khách vãng lai đã xóa
callme_lee06
Xem chi tiết
Miner Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2021 lúc 21:33

1) Ta có: \(\left|x^2-4x-5\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x-1\left(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\right)\\-x^2+4x+5=x-1\left(-1< x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5-x+1=0\\-x^2+4x+5-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=0\\-x^2+3x+6=0\end{matrix}\right.\Leftrightarrow x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{41}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{\sqrt{41}}{2}\\x-\dfrac{5}{2}=-\dfrac{\sqrt{41}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{41}+5}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{41}+5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{41}+5}{2}\right\}\)

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 0:14

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

Mai Thị Thúy
Xem chi tiết