cho tam giác ABC đều hai, hai đường cao BD và CE cắt nhau ở H, AH cắt BC tại M
a) chứng minh 4 điểm A,D,H,E cùng thuộc một đường tròn
b) chứng minh MD là tiếp tuyến của đường tròn đi qua bốn điểm A,D,H,E
Cho tam giác ABC đều, hai đường cao BD và CE cắt nhau ở H, AH cắt BC tại M
a) chứng minh 4 điểm A,D,H,E cùng thuộc một đường tròn
b) chứng minh MD là tiếp tuyến của đường tròn đi qua bốn điểm A,D,H,E
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
b: Gọi O là trung điểm của AH
ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Xét tứ giác BEHM có
\(\widehat{BEH}+\widehat{BMH}=180^0\)
=>BEHM là tứ giác nội tiếp
\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)
\(=\widehat{OHE}+\widehat{MBD}\)
\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)
=>EM là tiếp tuyến của (O)
cho tam giác ABC cân tại A (A<90), hai đường cao BD và CE cắt nhau tại H.
a. Chứng minh bốn điểm A,D,H,E cùng thuộc đường tròn, xác định tâm Ovaf vẽ đường tròn này.
b. Gọi K là giao điểm cảu AO và BC, Chứng minh KD là tiếp tuyến của đường tròn (O)
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
O là trung điểm của AH
b:
XetΔACB có
BD,CE là đường cao
BD căt CE tại H
=>H là trực tâm
=>AH vuông góc BC
=>K là trung điểm của CB
góc ODK=góc ODH+góc KDH
=góc BHK+góc KBH=90 độ
=>KD là tiếp tuyến của (O)
Cho tam giác ABC có hai đường cao BD va CE căt nhau tại H
a, Chứng minh bốn điểm A, D, H, E cùng nằm trên một đường tròn
b, Gọi (O) là đường tròn đi qua bốn điểm A, D, H, E và M là trung điểm của BC. Chứng minh ME là tiếp tuyên của (O)
a, Gọi O là trung điểm của AH thì OE = OA = OH = OD
b, HS tự làm
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A: AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H).
a) Chứng minh bốn điểm A, H, C, E cùng thuộc một đường tròn.
b) Chứng minh AH = BD; CE và DE là tiếp tuyến đường tròn đường kính BC.
c) Kẻ đường cao HK của tam giác HDE cắt BE tại I. Chứng mình 1 là trung điểm của HK.
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn( gọi tâm của nó là O)
b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O)
Cho tam giác $ABC$ có hai đường cao $BD$ và $CE$ cắt nhau tại $H$.
a) Chứng minh bốn điểm $A$, $D$, $H$, $E$ cùng nằm trên một đường tròn.
b) Gọi $M$ là trung điểm của $BC$. Chứng minh rằng $ME$ tiếp xúc với đường tròn ngoại tiếp tứ giác $AEHD$.
a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b) Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
^OEH=^OHE=^KHC; ^MEC=^MCE.
mà ^KHC+^MCE=90o.
Suy ra: ^OEH+^MEC=90o nên OE⊥EM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.
a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b) Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
; .
mà .
Suy ra: nên hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.
cho tam giác nhọn abc hai đường cao bd và ce cắt nhau tại h.
a) chứng minh a,d,e,h cùng thuộc 1 đường tròn
b) gọi F là giao điểm của ah và bc. chứng minh ch.ce=cf.cb
c)vẽ đường tròn (o;bc), và tiếp tuyến ak của o tại điểm k. chứng minh ah.af=ae.ab=ak^2
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.
a, Chứng minh 4 điểm A, D, H, E cùng nằm trên một đường tròn (O).
b, Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến của (O).
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H
a) Chứng minh rằng bốn điểm A,D,H,E cùng nằm trên một đường tròn
b) Gọi M là tđ của BC.Chứng minh rằng ME là tiếp tuyến của đường tròn
Giải thích các bước giải:
a. Gọi OO là trung điểm AHAH
Xét tam giác AEHAEH vuông tại HH: OO là trung điểm AH⇒AO=OH=OEAH⇒AO=OH=OE
Chứng minh tương tự ⇒AO=OH=OD⇒AO=OH=OD
⇒OA=OH=OD=OE⇒OA=OH=OD=OE
Vậy A,D,H,E∈(O)A,D,H,E∈(O) với OO là trung điểm AHAH
b. Có: BD∪CE=H⇒HBD∪CE=H⇒H là trực tâm tam giác ABCABC
⇒AH⊥BC⇒AH⊥BC
Mà: CE⊥ABCE⊥AB
⇒ˆEAH=ˆECB(1)⇒EAH^=ECB^(1) (hai góc có cạnh tương ứng vuông góc)
Có: OA=OE⇒OA=OE⇒ tam giác AOEAOE cân tại OO
⇒ˆAEO=ˆEAO(2)⇒AEO^=EAO^(2)
Chứng minh tương tự ⇒⇒ tam giác EMCEMC cân tại MM
⇒ˆECM=ˆCEM(3)⇒ECM^=CEM^(3)
(1);(2);(3)⇒ˆAEO=ˆCEM(1);(2);(3)⇒AEO^=CEM^
Mà: ˆAEO+ˆOEC=ˆAEC=90∘AEO^+OEC^=AEC^=90∘
⇒ˆOEC+ˆCEM=ˆOEM=90∘⇒OEC^+CEM^=OEM^=90∘
⇒EM⇒EM là tiếp tuyển của (O)(O)