Cho M=\(\left|x-2013\right|+\left|x-2\right|\). Tìm x để M có GTNN
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
1. Cho hàm số \(y=\left|\dfrac{x^2+\left(m+2\right)x-m^2}{x+1}\right|\) . GTLN của hàm số trên đoạn \(\left[1;2\right]\)
có GTNN bằng
2.Tìm tham số thực \(m\) để phương trình
\(\left(4m-3\right)\sqrt{x+3}+\left(3m-4\right)\sqrt{1-x}+m-1=0\) có nghiệm thực
3.Tìm \(m\) để \(x^2+\left(m+2\right)x+4=\left(m-1\right)\sqrt{x^3+4x}\) , (*) có nghiệm thực
4.Cho hàm số \(y=f\left(x\right)\) liên tục và có đạo hàm \(f'\left(x\right)=\left(x+2\right)\left(x^2-9\right)\left(x^4-16\right)\) trên \(R\) . Hàm số đồng biến trên thuộc khoảng nào trên các khoảng sau đây
\(A.\left(1-\sqrt{3};1+\sqrt{3}\right)\)
B.(\(3;\)+∞)
\(C.\)(1;+∞)
D.\(\left(-1;3\right)\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm duy nhất (x;y) thỏa mãn x+y đạt GTNN
=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2
=>x=2-1+m^2/m^2 và y=(m+1)x-m-1
=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2
x+y=(m^2+m+2)/m^2
Để x+y min thì m^2+m+2 min
=>m^2+m+1/4+7/4 min
=>(m+1/2)^2+7/4min
=>m=-1/2
\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)
Tìm m để \(B=\left(x_1-x_2\right)^2\) đạt GTNN.
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(4m+1\right)^2-8\left(m-4\right)\ge0\)
\(\Leftrightarrow16m^2+33\ge0\left(\text{luôn đúng}\right)\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=4m+1\\x_1x_2=-2\left(m-4\right)\end{matrix}\right.\)
\(B=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(4m+1\right)^2+8\left(m-4\right)\\ B=16m^2+16m-31=4\left(4m^2+4m+1\right)-35=4\left(2m+1\right)^2-35\ge-35\)
Vậy \(B_{min}=-35\Leftrightarrow m=-\dfrac{1}{2}\)
tìm GTNN của A=\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{MIN}=2\)
Ta có :
A=|x-2013|+|x-2014|+|x-2015|
<=> A=|2013-x|+|x-2014|+|x-2015|
>hoặc =|2013-x+x+2015|+|x-2014
=|2|+|x-2015|=2+|x-2015|
=>GTNN của A =2 khi :
|x-2015|=0=>x-2015=0=>x=2015
Vậy GTNN của A=2 khi x=2015
Cho pt \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt GTNN.
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
B1: tìm m để pt có nghiệm: \(4\sqrt{-x^2+3x+4}+3x+4=m\left(2\sqrt{x+1}+\sqrt{4-x}\right)\)
b2: \(y=2x^2-3\left(m+1\right)x+m^2+3m-2\) tìm m để gtnn của hàm số là gt lớn nhất
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
2) cho hpt: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: A= \(x_0^2+y^2_0\) đạt GTNN
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)