Giải phương trình nghiệm nguyên:
\(x^3+y^3=y^6\)
Giải phương trình nghiệm nguyên: \(x^6+3x^2+1=y^3\)
Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).
Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).
Khi đó y = 1.
Vậy...
giải phương trình nghiệm nguyên sau
\(x^6-x^2+6=y^3-y\)
đặt x2=a;y=b
<=>a3-a+6=b3-b
<=>b3-a3-(b-a)=6
<=>(b-a)(b2+ab+a2)-(b-a)=6
<=>(b-a)(b2+ab+a2-1)=6
đến đây là phương trình ước số rồi,lập bảng là đc
Với gía trị nào của a 0<= a<=9 thì các số dạng 4...4aa..a mỗi cái có n cs và 11...1aa...a mỗi cái có n cs a đồng thời là tích 2 số tự nhiên liên tiếp
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải phương trình nghiệm nguyên: x²y²(x+y)+x+y=3+xy
Bác nào giải hộ e mấy cái phương trình nghiệm nguyên này e tick cho =]]~
1) x2+ 7x= y2
2) x2+ x+ 6= y2
3) 7(x2+ xy+ y2)= 39(x+ y)
x, y là số nguyên nhé - phương trình nghiệm nguyên mà:)
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
Giải phương trình nghiệm nguyên x^3 = 3^y+7
Lời giải:
Vì $x^3-7$ nguyên nên $3^y$ nguyên kéo theo $y$ là số nguyên không âm.
Một số lập phương khi chia cho $9$ dư $0,1,8$
$\Rightarrow x^3\equiv 0,1,8\pmod 9$
$\Rightarrow 3^y=x^3-7\equiv -7, -6, 1\pmod 9$
Nếu $y\geq 2$ thì điều này không thỏa mãn nên $y=0,1$
Thay $y=0$ thì $x=2$
Thay $y=1$ thì $x=\sqrt[3]{10}$ (loại)
Cho x,y nguyên dương giải phương trình nghiệm nguyên sau: 3^x+112=y^2
Giải phương trình nghiệm nguyên:
3x3+5x2=x(y-3)+y-6
Mn giúp mình nha :33333
Ta có 3x3 + 5x2 = x(y - 3) + y - 6
<=> 3x3 + 5x2 = xy - 3x + y - 6
<=> 3x3 + 5x2 - xy + 3x - y +6 = 0
<=> (3x3 + 6x2 + 3x) - y(x + 1) - (x2 - 1) = -5
<=> 3x(x + 1)2 - y(x + 1) - (x - 1)(x + 1) = -5
<=> (x + 1)(3x2 + 3x - y - x + 1) = -5
<=> (x + 1)(3x2 + 2x + 1 - y) = -5
Lập bảng xét các trường hợp :
x + 1 | 1 | -5 | -1 | 5 |
3x2 + 2x + 1 - y | -5 | 1 | 5 | -1 |
x | 0 | -6 | -2 | 4 |
y | 6 | 96 | 4 | 58 |
Vậy các cặp (x;y) thỏa mãn là (0;6) ; (-6;96) ; (-2;4) ; (4;58)