Cho \(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\). Tìm GTNN của B
Cho \(2018x^3=2019y^3=2020z^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=8\)
Tính giá trị biểu thức: \(B=\frac{\sqrt[3]{2018x^2+2019y^2+2020z^2}}{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}\)
Lời giải:
Đặt mẫu số của $B$ là $M$.
Từ \(2018x^3=2019y^3=2020z^3\)
\(\Rightarrow \sqrt[3]{2018}x=\sqrt[3]{2019}y=\sqrt[3]{2020}z=\frac{\sqrt[3]{2018}}{\frac{1}{x}}=\frac{\sqrt[3]{2019}}{\frac{1}{y}}=\frac{\sqrt[3]{2020}}{\frac{1}{z}}=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
\(=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{8}=\frac{M}{8}\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{M}{8\sqrt[3]{2018}}\\ y=\frac{M}{8\sqrt[3]{2019}}\\ z=\frac{M}{8\sqrt[3]{2020}}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2018x^2=\frac{\sqrt[3]{2018}M^2}{64}\\ 2019y^2=\frac{\sqrt[3]{2019}M^2}{64}\\ 2020z^2=\frac{\sqrt[3]{2020}M^2}{64}\end{matrix}\right.\)
\(\Rightarrow 2018x^2+2019y^2+2020z^2=\frac{M^2(\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020})}{64}=\frac{M^3}{64}\)
\(\Rightarrow B=\frac{\sqrt[3]{\frac{M^3}{64}}}{M}=\frac{M}{4M}=\frac{1}{4}\)
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
1 cho các số thực a,b tn \(a^2+ab+b^2=3\)
tìm GTNN,GTLN của \(M=a^4-ab+b^4\)
2 cho các số dương a,b,c tm \(a+b+c=2019\) tìm GTNN \(M=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
3cho các số thực tm \(x+y+z\le1\)tìm GTNN \(P=\frac{1}{x^2+y^2+z^2}+\frac{2020}{xy+yz+xz}\)
4cho các số \(a,b,c>\frac{25}{4}\) tìm GTNN \(Q=\frac{a}{2\sqrt{b}-5}+\frac{b}{2\sqrt{c}-5}+\frac{c}{2\sqrt{a}-5}\)
5cho x,y>0 tm \(x+y=4\) tìm GTNN \(P=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
e nhầm đoạn này r
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì
\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ
Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.
Bài 5 cần gì dùng Mincopxki chi cho mệt nhỉ?
\(\left(x^2+\frac{1}{x^2}\right)\left[2^2+\left(\frac{1}{2}\right)^2\right]\ge\left(2x+\frac{1}{2x}\right)^2\)
Do đó: \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{2x+\frac{1}{2x}}{\sqrt{2^2+\frac{1}{2^2}}}=\frac{4x+\frac{1}{x}}{\sqrt{17}}\)
Tương tự rồi cộng lại rồi dùng Cauchy-Schwarz
Bài 1: Tìm GTNN của biểu thức sau: B= |x-2018|+|x-2019|+|x-2020|
Bài 2: Tìm GTNN của biểu thức sau: C=\(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon caccau trc :3
Bài 2:
\(C=\frac{2019}{\sqrt{x}+3}\)
Vì C có tử = 2019 ko đổi
\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min
+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)
+Dấu ''='' xảy ra khi ......tự lm :))
\(\Rightarrow\)Mẫu đạt min = 3 khi x=...
\(\Rightarrow\)C max = ... khi x=....
BÀi 1:
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)
+Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=2019\)
+Vậy \(B_{min}=2\) khi \(x=2019\)
Tìm GTNN và GTLN của các biểu thức:
\(a,P=\sqrt{x}+\sqrt{2-x}\)
\(b,Q=\sqrt{x-2019}+\sqrt{2020-x}\)
Cho phương trình 2018x2 - (m - 2019)x - 2020=0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: \(\sqrt{x_1^2+2019}-x_1=\sqrt{x_1^2+2019}+x_2\)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Biểu Thức\(P=1\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+...+\frac{1}{\sqrt{2020}+\sqrt{2019}}\)rút gọn bằng \(x\sqrt{2020}+y\left(x,y\inℤ\right).\)Giá trị của \(x^2+y^2\)là:
\(A.2\\ B.2\sqrt{2}\\ C.\sqrt{2}\\ D.4\sqrt{2}\)
A.2
......
Chúc học tốt
a,Cho \(\left(x-2019+\sqrt{\left(x-2019\right)^2+2020}\right)\left(y-2019+\sqrt{\left(y-2019\right)^2+2020}\right)=2020\)Tính : D = x + y
b, Cho \(\frac{-3}{2}\le x\le\frac{3}{2},x\ne0,a=\sqrt{3+2x}-\sqrt{3-2x}\)
Tính : \(G=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}\) theo a.
Em cảm ơn mọi người nhiều ạ.