1. Cho \(\left(x\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính S=x+y+2020
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Rút gọn biểu thức :
a) A = 4\(\sqrt{x}\)- \(\frac{\left(x+6\sqrt{x}+9\right)\left(\sqrt{x}-3\right)}{x-9}\)với 0 ≤ x ≠ 9 ;
b) B = \(\frac{\sqrt{9x^2+12x+4}}{3x+2}\)với x ≠ \(-\frac{2}{3}\)
Điều kiện: $ - \frac{1}{3} \le x \le 6$
Ta nhẩm thấy x = 5 là nghiệm của PT, thêm bớt và trục căn thức ta có:
Phương trình $ \Leftrightarrow \left( {\sqrt {3x + 1} - 4} \right) - \left( {\sqrt {6 - x} - 1} \right) + \left( {3{x^2} - 14x - 5} \right) = 0$
$ \Leftrightarrow \frac{{3\left( {x - 5} \right)}}{{\sqrt {3x + 1} + 4}} + \frac{{x - 5}}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)\left( {x - 5} \right) = 0$
$ \Leftrightarrow \left( {x - 5} \right)\left[ {\frac{3}{{\sqrt {3x + 1} + 4}} + \frac{1}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)} \right] = 0 \Leftrightarrow \left( {x - 5} \right)g\left( x \right) = 0$
Với điều kiện trên ta thấy g(x) > 0 vậy x = 5 là nghiệm của PT.
Giúp em với ạ ! Em đang cần gấp =(( Em cảm ơn ạ !
BÀI 1 : Cho biểu thức P = \(\left(\frac{\sqrt{x}-4}{x-2\sqrt{x}}-\frac{3}{2-\sqrt{x}}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}}{2-\sqrt{x}}\right)\)
a) Rút gọn biểu thức P
b) Tìm x để P = \(3x-3\sqrt{x}\)
BÀI 2 : Cho biểu thức B = \(\frac{2}{\sqrt{x}-2}\) và A = \(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\) với x \(\ge\) 0 và x \(\ne\) 4
a) Rút gọn biểu thức P = \(\frac{B}{A}\)
b) Tìm x thỏa mãn P.\(\left(\sqrt{x}+1\right)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2}x+4\sqrt{2}+2\)
Rút gọn:
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\frac{5}{\sqrt{3}-2\sqrt{2}}-\frac{5}{\sqrt{3}+\sqrt{8}}\)
Giải các phường trình sau:
1) \(\sqrt{2x-1}=\sqrt{5}\)
2) \(\sqrt{3}x^2-\sqrt{12}=0\)
3) \(\sqrt{x-5}=3\)
4) \(\sqrt{4x^2}-6\)
5) \(\sqrt{\left(x-3\right)^2}=9\)
6) \(\sqrt{4\left(1-x\right)^2}-6=0\)
7) \(\sqrt{9\left(x-1\right)}=21\)
8) \(\sqrt[3]{x+1}=2\)
9) \(\sqrt{4x^2+4x+1}=6\)
10) \(\sqrt{2}x-\sqrt{50}=0\)
11) \(\sqrt{\left(2x-1\right)^2}=3\)
12) \(\sqrt[3]{3-2x}=-2\)
Mọi người ơi giúp em với!!! :((((
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\right)\)