Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dưa Hấu
Xem chi tiết
Diệu Anh Bùi
Xem chi tiết
Nguyễn Hoàng
19 tháng 2 2020 lúc 22:39

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Nguyễn Thanh
Xem chi tiết
Đinh Đức Hùng
29 tháng 8 2017 lúc 13:32

Áp dụng Cauchy Schwarz dạng Engel ta có :

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Diệp Nguyễn Thị Huyền
Xem chi tiết
Edogawa Conan
5 tháng 7 2021 lúc 9:28

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

Khách vãng lai đã xóa
KCLH Kedokatoji
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Akai Haruma
2 tháng 1 2020 lúc 23:36

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)

Áp dụng BĐT AM-GM:

\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)

\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)

Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:

\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)

Áp dụng BĐT Cauchy_Schwarz và AM-GM:

\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)

\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)

Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 5 2020 lúc 20:42
\(\Leftrightarrow\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\ge3\)

\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)

Thật vậy, theo AM-GM ta có:

\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)

\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

Trí Tiên
Xem chi tiết
HD Film
25 tháng 7 2020 lúc 20:35

\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)

\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)

\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)

Dấu = xảy ra khi a=b=c=d

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
25 tháng 7 2020 lúc 20:40

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
25 tháng 7 2020 lúc 20:41

\(VT=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

Áp dụng BĐT Svac-xơ cho 3 số dương ta được :

\(VT\ge\frac{\left(a+b+c+d\right)^2}{4ab+4ac+4ad+4bc+4bd+4cd}\)

Áp dụng BĐT phụ \(x^2+y^2\ge2xy\) ta được :

\(a^2+b^2\ge2ab;a^2+c^2\ge2ac;a^2+d^2\ge2ad\)

\(b^2+c^2\ge2bc;b^2+d^2\ge2bd;c^2+d^2\ge2cd\)

\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)

Ta lại có : \(\left(a+b+c+d\right)^4=a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\)

\(\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{3}\)

\(\Rightarrow VT\ge\frac{\left(a+b+c+d\right)^4}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{12\left(ab+ac+ad+bc+bd+cd\right)}=\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Khách vãng lai đã xóa
Fire Sky
Xem chi tiết