Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shoppe pi pi pi pi
Xem chi tiết
Võ Thạch Đức Tín
3 tháng 9 2018 lúc 20:48

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )

\(\Rightarrow n^3-n⋮6\)

Never_NNL
3 tháng 9 2018 lúc 20:53

n^3 - n 

= n( n^2 - 1 )

Xét 2 trường hợp :

1 . n là số chẵn

ð  n( n^2 – 1 ) chia hết cho 2

2 . n là số lẽ

=>  n^2 – 1 là số chẵn

=>  n( n^2 – 1 ) chia hết cho 2

Vậy n^3 – n chia hết cho 2

Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )

Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3

=>  n^3 – n chia hết cho 3

Vì n^3 – n cùng chia hết cho cả 3 và 2

=>  n^3 – n chia hết cho 6

Never_NNL
3 tháng 9 2018 lúc 21:04

n/3 + n^2/2 + n^3/6

= 2n/6 + 3n^2/6 + n^3/6

= 2n + 3n^2 + n^3 / 6

= ( 2n + 2n^2 )  + ( n^2 + n^3 ) / 6 ( Tách 3n^2 = n^2 + 2n^2 )

= 2n( n + 1 ) + n^2( n + 1 ) / 6

= ( n + 1 )( 2n + n^2 ) / 6

= n( n + 1 )( n + 2 ) / 6

Vì n , n+1 và n+2 là 3 số tự nhiên liên tiếp

=>  n( n + 1 )( n + 2 ) chia hết cho 3

Trong 3 số nguyên liên tiếp luôn tồn lại 1 số chẵn

=> n( n + 1 )( n + 2 ) chia hết cho 2

Vì n( n + 1 )( n + 2 ) cùng chia hết cho 2 và 3

=> n( n + 1 )( n + 2 ) chia hết cho 6

=> n( n + 1 )( n + 2 ) = 6k ( k\(\in Z\))

Vậy n(n + 1 )( n + 2 )/6 = 6k/6 = k hay chúng luôn nguyên .

Phan Thị Mỹ Dung
Xem chi tiết
Đinh Đức Hùng
24 tháng 7 2017 lúc 10:21

\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)

\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)

Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3

Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên

Vậy \(A\) luôn có gt là số nguyên 

❤ŶêÚ ŤĤúŶ ŃĤấŤ❤
12 tháng 5 2020 lúc 20:14

out game over

Khách vãng lai đã xóa

iam do not know 

Khách vãng lai đã xóa
Nguyễn kim ngân
Xem chi tiết

 \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Với n nguyên

=> (n-1)n(n+1) là tích 3 số tự nhiên liên tiếp  

Lại có tích 3 số tự nhiên liên tiếp chi hết cho 2 và 3 

=> (n-1)n(n+1) chia hết 6 

=> n3-n chia hết 6 

=> (n3-n)/6 có giá trị nguyên

THI QUYNH HOA BUI
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2022 lúc 20:21

\(B=\left(n-1\right)\left(n+5\right)\left(n+1\right)\left(n+3\right)+16\)

\(=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\)

\(=\left(n^2+4n\right)^2-2\left(n^2+4n\right)-15+16\)

\(=\left(n^2+4n-1\right)^2\) là số chính phương

ILoveMath
15 tháng 1 2022 lúc 20:22

\(B=\left(n^2-1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left(n-1\right)\left(n+1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left[\left(n-1\right)\left(n+5\right)\right]\left[\left(n+1\right)\left(n+3\right)\right]+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n-5+8\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)^2+8\left(n^2+4n-5\right)+16\\ \Rightarrow B=\left(n^2+4n-5+4\right)^2\\ \Rightarrow B=\left(n^2+4n-1\right)^2\)

Vậy B là số chính phương với mọi số nguyên n

Ruby Meo
Xem chi tiết
TuanMinhAms
18 tháng 7 2018 lúc 21:08

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

Không Tên
18 tháng 7 2018 lúc 21:09

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

Tớ Đông Đặc ATSM
18 tháng 7 2018 lúc 21:12

a,  <=> 2n[ n(n+1)-n2-n+3)

<=> 2n( n2+n-n2-n+3)

<=> 6n chia hết cho 6 với mọi n nguyên

b, <=> 3n-2n2-(n+4n2-1-4n) -1

<=> 3n-2n2-n-4n2+1+4n-n-1

<=> 6n-6n2

<=> 6(n-n2)  chiiaia hhehethet cchchocho 6

c ,<=> m3-23-m3+m2-32-m2-18

<=>-35 => ko phụ thuộc vào biến

Big City Boy
Xem chi tiết
Yeutoanhoc
24 tháng 2 2021 lúc 21:18

`A=n/3+n^2/2+n^3/6`

`=(n^3+3n^2+2n)/6`

`=(n(n^2+3n+2))/6`

`=(n(n+1)(n+2))/6`

Vì `n(n+1)(n+2)` là tích 3 số nguyên liên tiếp

`=>n(n+1)(n+2) vdots 6`

`=>(n(n+1)(n+2))/6 in Z(forall x in Z)`

Ngát Hương Hoa
Xem chi tiết
Ship Thit
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 0:51

a: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=a^2+4a+4-a^2+4a-4=8a⋮4\)

b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)

Big City Boy
Xem chi tiết
Yeutoanhoc
24 tháng 2 2021 lúc 21:10

`A=(n-1)(n-3)(n-4)(n-6)+9`

`=[(n-1)(n-6)][(n-3)(n-4)]+9`

`=(n^2-7n+6)(n^2-7n+12)+9`

`=(n^2-7n+9-3)(n^2-7n+9+3)+9`

`=(n^2-7n+9)^2-9+9`

`=(n^2-7n+9)^2` là số chính phương.

Vậy A là số chính phương `forall x in Z`

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 21:16

Ta có: \(A=\left(n-1\right)\left(n-3\right)\left(n-4\right)\left(n-6\right)+9\)

\(=\left(n^2-7n+6\right)\left(n^2-7n+12\right)+9\)

\(=\left(n^2-7n\right)^2+18\left(n^2-7n\right)+72+9\)

\(=\left(n^2-7n\right)^2+18\left(n^2-7n\right)+81\)

\(=\left(n^2-7n+9\right)^2\) là số chính phương(đpcm)