Cho \(\Delta\) ABC, góc B=50 độ, góc C= 70 độ. Kẻ trung tuyến AM, đường cao AH. Tính \(\widehat{MAH}\)
Cho tam giác ABC có góc C=70 độ, góc B=50 độ. Kẻ trung tuyến AM, kẻ đường cao AH. Tính góc MAH
Cho tam giác ABC, có góc B = 50 độ; góc C = 70 độ. Vẽ trung tuyến AM và đường cao AH. Tính MAH
Cho\(\Delta ABC\), \(\widehat{B}=50^0\), \(\widehat{C}=70^0\), trung tuyến AM, đường cao AH. Tính \(\widehat{MAH}\).
Help me please.
Cho tam giác abc có góc bac=80độ , abc=60 độ . Vẽ đường cao AH trung tuyến AM . Tính MAH
Cho \(\Delta ABC\), Góc B = 50o, Góc C= 70o. AH là đường cao, AM là đường trung tuyến
Tính Góc MAH
Giải hộ mk nhé, mk tick cho
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM, AB = 4cm, sin B = 1/3
a, Tính độ dài các đoạn thẳng AC, BC , AH
b, Tính cos góc MAH
a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)
nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)
hay BC=3AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow8\cdot AC^2=16\)
\(\Leftrightarrow AC=\sqrt{2}cm\)
\(\Leftrightarrow BC=3\sqrt{2}cm\)
\(\Leftrightarrow AH=\dfrac{4\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}cm\)
b: \(\cos\widehat{MAH}=\dfrac{AH}{AM}=\dfrac{4}{3}:\dfrac{3\sqrt{2}}{2}=\dfrac{4}{3}\cdot\dfrac{2}{3\sqrt{2}}=\dfrac{8\sqrt{2}}{18}=\dfrac{4\sqrt{2}}{9}\)
Cho tam giác ABC có góc B, C nhọn. Vẽ đường cao AH, trung tuyến AM. Biết các góc BAH, MAH, MAC bằng nhau. Tính góc BAC.
goi goc BAH,MAH,MAC là A1, A2 ,A3 ta co;
B+A1 = 90 mà A1=A2=A3
nen BAC=90
lam k met viet met qua
Cho \(\Delta ABC\) có BC =15cm; góc B=50 độ ; góc C= 30 độ. Kẻ đường cao AH (H\(\in\)BC). Tính AH (Làm tròn đến chữ số thập phân thứ nhất).
\(\cot B=\dfrac{BH}{AH}=\cot50\approx0,8\\ \cot C=\dfrac{CH}{AH}=\cot30=\sqrt{3}\approx1,7\\ \Rightarrow\dfrac{BH+CH}{AH}\approx0,8+1,7=2,5\\ \Rightarrow\dfrac{BC}{AH}=\dfrac{15}{AH}\approx2,5\Rightarrow AH\approx6\left(cm\right)\)
Cho tam giác ABC vuông tại A,đường cao AH, trung tuyến AM, AB = 4cm, sinB=1/3 a. Tình AC,BC,AH b. Tính cos góc MAH
a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)
nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)
hay BC=3AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)
\(\Leftrightarrow8\cdot AC^2=16\)
\(\Leftrightarrow AC^2=2\)
\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:
\(AM^2=AH^2+HM^2\)
\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)
hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)
Xét ΔMAH vuông tại H có
\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)
\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)