Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Mai
Xem chi tiết
Marrie
Xem chi tiết
Cheems
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Nguyễn Duyên
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 21:43

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC=\sqrt{2}cm\)

\(\Leftrightarrow BC=3\sqrt{2}cm\)

\(\Leftrightarrow AH=\dfrac{4\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}cm\)

b: \(\cos\widehat{MAH}=\dfrac{AH}{AM}=\dfrac{4}{3}:\dfrac{3\sqrt{2}}{2}=\dfrac{4}{3}\cdot\dfrac{2}{3\sqrt{2}}=\dfrac{8\sqrt{2}}{18}=\dfrac{4\sqrt{2}}{9}\)

Hồ Quốc Khánh
Xem chi tiết
Chàng trai lạnh lùng
7 tháng 3 2016 lúc 10:19

Tích đi rồi mình trả lời

Đặng Quỳnh Ngân
7 tháng 3 2016 lúc 10:32

goi goc BAH,MAH,MAC là A1, A2 ,A3 ta co

B+A1 = 90 mà A1=A2=A3

nen BAC=90

lam k met viet met qua

Trần Thị Ngọc Diệp
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 21:03

\(\cot B=\dfrac{BH}{AH}=\cot50\approx0,8\\ \cot C=\dfrac{CH}{AH}=\cot30=\sqrt{3}\approx1,7\\ \Rightarrow\dfrac{BH+CH}{AH}\approx0,8+1,7=2,5\\ \Rightarrow\dfrac{BC}{AH}=\dfrac{15}{AH}\approx2,5\Rightarrow AH\approx6\left(cm\right)\)

BÙI HUY ĐỨC
Xem chi tiết
Tử Nguyệt Hàn
25 tháng 8 2021 lúc 17:56

undefined

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 23:51

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC^2=2\)

\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+HM^2\)

\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)

hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)

Xét ΔMAH vuông tại H có 

\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)

\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)