Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nhật Tiền
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

Phuong Nguyen dang
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2019 lúc 22:05

Gọi \(M\left(a;b\right)\)

\(\Rightarrow\overrightarrow{MB}=\left(2-a;3-b\right)\Rightarrow2\overrightarrow{MB}=\left(4-2a;6-2b\right)\)

\(\overrightarrow{MC}=\left(-1-a;-2-b\right)\Rightarrow3\overrightarrow{MC}=\left(-3-3a;-6-3b\right)\)

\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(1-5a;-5b\right)=\overrightarrow{0}\)

\(\Rightarrow\left\{{}\begin{matrix}1-5a=0\\-5b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{5}\\b=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{1}{5};0\right)\)

Phuong Nguyen dang
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 9 2019 lúc 22:12

Bạn ghi lại đề, \(2\overrightarrow{MB}+3????\)

Jennie Kim
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2020 lúc 23:45

a.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)

\(\Rightarrow I\left(-1;3\right)\)

b.

Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)

Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)

Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)

Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)

VI Vi
Xem chi tiết
Mysterious Person
29 tháng 11 2017 lúc 10:51

(mk lm câu a theo cái đề bn đã xứa nha )

a) giả sử : \(I\) có tọa độ \(\left(x_I;y_I\right)\)

ta có : \(I\) là trung điểm của \(AB\) \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2-4}{2}=-1\\y_I=\dfrac{4+2}{2}=3\end{matrix}\right.\)

vậy điểm \(I\) có tọa độ là \(I\left(-1;3\right)\)

theo đề bài ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\) (1)

\(I\) là trung điểm \(AB\) \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) (2)

từ (1)(2) ta có : \(\overrightarrow{MA}=\overrightarrow{IA}\) \(\Leftrightarrow\) \(M\equiv I\)

vậy \(M\equiv I\) thì ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\)

Mysterious Person
29 tháng 11 2017 lúc 10:57

b) (lm theo đề đã sữa)

giả sử : điểm \(N\) có tọa độ là \(\left(x_N;y_N\right)\)

vì gốc \(O\) là trọng tâm của tam giác \(ABN\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+x_B+x_N}{3}=0\\\dfrac{y_A+y_B+y_N}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A+x_B+x_N=0\\y_A+y_B+y_N=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2-4+x_N=0\\4+2+y_N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_N=2\\y_N=-6\end{matrix}\right.\)

vậy điểm \(N\) có tọa độ là \(N\left(2;-6\right)\) thì gốc \(O\) là trọng tâm của tam giác \(ABN\)

Bùi Thị Vân
23 tháng 11 2017 lúc 10:38

Bạn nên xem lại đề vì M, N không liên quan tới các giả thiết của bài toán.

Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:44

\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)

\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:

\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)

Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)

Phương trình đường thẳng d qua M và vuông góc AB có dạng:

\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)

Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân

Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)

Lương Minh Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:21

Chọn B

Ái Nữ
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 12:34

Lời giải:

Đường trung trực của $AB$ sẽ cách đều 2 điểm $A,B$. Gọi đường này là $d$

$\overrightarrow{n_d}=\overrightarrow{AB}=(-1,1)$

$(d)$ là đường trung trực của $AB$ nên đi qua trung điểm $I(\frac{3}{2}, \frac{7}{2})$ của $AB$

Do đó PTĐT $(d)$ là:

$-1(x-\frac{3}{2})+1(y-\frac{7}{2}=0$

$\Leftrightarrow -x+y-2=0$