giải phương trình:
\(\sqrt{2x-3}+\sqrt{5-2x}=\sqrt{-4x^2+16x-15}+1\)
Giải phương trình:
1: \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
2: \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
1) => 9(x-1)=\(21^2\)
=> 9x-9=441
=> 9x=450
=> x=50
2)=>\(\sqrt{1-x}\) + \(\sqrt{4\left(1-x\right)}\)-\(\dfrac{1}{3}\sqrt{16\left(1-x\right)}\)+5=0
=>\(\sqrt{1-x}\)\(\left(1+2-\dfrac{1}{3}.4\right)\)+5=0
=>\(\dfrac{5}{3}\sqrt{1-x}\) +5=0
=>\(\sqrt{1-x}\)=-3
Phuong trinh vo nghiem
Giải phương trình:
\(16x^3+\left(8x^2-1\right)\sqrt{4x^2+1}=\frac{15}{16x+9}\)
Đặt \(y=2x+\sqrt{4x^2+1}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
giải bất phương trình:
\(\sqrt{2x^3+4x^2+4x}-\sqrt[3]{16x^3+12x^2+6x-3}\ge4x^4+2x^3-2x-1\)
Giải phương trình:
1, \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
2, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
3, \(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-2x}\)
b. \(\sqrt{\dfrac{-5}{2x+1}}\)
* Giải phương trình
a. \(\sqrt{\left(2x-3\right)^2}=5\)
b. \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)
b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)
( bây giờ mình bận nên làm trước 2 bài =))
a, \(x\le\dfrac{3}{2}\)
b, \(x< -\dfrac{1}{2}\)
*a, \(\sqrt{\left(2x-3\right)^2}=5=>|2x-3|=5=>\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b, \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
\(< =>3\sqrt{x+1}+2\sqrt{x+1}-4\sqrt{x+1}=3\)\(\left(x\ge-1\right)\)
\(< =>\sqrt{x+1}=3=>x+1=9=>x=8\left(tm\right)\)
1 Giaỉ các phương trình sau ;
a)\(\sqrt[]{4x^2-4x+9=3}\) b) \(\sqrt[]{16x=8}\)
c) \(\sqrt{2x}=\sqrt{5}\) d) \(\sqrt[]{3x-1}=4\)
e)\(\sqrt[]{4\left(1-x\right)^2}-6=0\) g) \(\sqrt[]{x^2-x+16=4}\)
mn giúp e nha , e đang cần gấp ^^
c: Ta có: \(\sqrt{2x}=\sqrt{5}\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
d: Ta có: \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
hay \(x=\dfrac{17}{3}\)
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Ta có: \(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)