Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Quỳnh
Xem chi tiết
Trịnh Long
9 tháng 8 2021 lúc 21:36

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2017 lúc 14:46

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2017 lúc 3:23

Chọn D.

Gọi M là trung điểm của BC

Ta có 

Mà AM = BC/ 2= 6 nên GA = 2/3. AM = 4

Hóa10
Xem chi tiết
Nhi Lê
Xem chi tiết
Jennie Kim
Xem chi tiết
mina
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:18

\(\left\{{}\begin{matrix}AM=\sqrt{AB^2+BM^2}=3\sqrt{5}\\DM=\sqrt{CD^2+CM^2}=3\sqrt{5}\end{matrix}\right.\) \(\Rightarrow\) tam giác ADM cân tại M

Gọi F là trung điểm AD \(\Rightarrow ABMF\) là hình chữ nhật \(\Rightarrow MF=AB=6\)

Theo tính chất trọng tâm: \(GF=\dfrac{1}{3}MF=2\)

\(DF=\dfrac{1}{2}AD=3\)

Đặt \(T=\left|\overrightarrow{GD}\right|=\left|\overrightarrow{GF}+\overrightarrow{FD}\right|\)

\(\Rightarrow T^2=GF^2+FD^2+2\overrightarrow{GF}.\overrightarrow{DF}=GF^2+DF^2=2^2+3^2=13\) 

\(\Rightarrow\left|\overrightarrow{GD}\right|=\sqrt{13}\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:18

undefined

Bùi Thị Ngọc Anh
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 10 2019 lúc 18:37

Gọi M là trung điểm BC

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GM}=2.\frac{1}{3}\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left|\overrightarrow{v}\right|=\frac{2}{3}\left|\overrightarrow{AM}\right|\)

\(AM=\frac{1}{2}BC=6\Rightarrow\left|\overrightarrow{v}\right|=4\)

5.Trần Nguyên Chương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 8:08

a: Gọi M là trung điểm của AB

Xét ΔABC có

G là trọng tâm

M là trung điểm của AB

Do đó: CG=2/3CM

=>CG=2GM

=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)

\(=2\overrightarrow{GM}+\overrightarrow{GC}\)

\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)

b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)

\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3\cdot\overrightarrow{MG}\)