§2. Tập hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hóa10

tam giác abc đều các cạnh là 2a có trọng tâm g khi đó vecto GA+GB-GC BẰNG

\(\overrightarrow{GA}+\overrightarrow{GB}-\overrightarrow{GC}\)

\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{CG}\)

\(=\overrightarrow{GA}+\overrightarrow{CB}\)

Qua C, lấy K sao cho \(\overrightarrow{CK}=\overrightarrow{GA}\)

=>CK//GA và CK=GA

Xét ΔABC đều có G là trọng tâm

nên AG⊥BC

=>CK⊥CB

Xét ΔABC đều có G là trọng tâm

nên G là tâm đường tròn ngoại tiếp ΔABC

=>GA=GB=GC

Xét (G) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC

nên \(\hat{BGC}=2\cdot\hat{BAC}=120^0\)

Xét tứ giác AGCK có

AG//CK

AG=CK

Do đó: AGCK là hình bình hành

Hình bình hành AGCK có AG=GC

nên AGCK là hình thoi

=>CA là phân giác của góc GCK

=>\(\hat{GCK}=2\cdot\hat{GCA}=60^0\)

Xét ΔGCK có GC=KC và \(\hat{GCK}=60^0\)

nên ΔGCK đều

=>\(\hat{KGC}=60^0\)

\(\hat{BGC}+\hat{KGC}=120^0+60^0=180^0\)

=>B,G,K thẳng hàng

Trên tia đối của tia GC, lấy E sao cho GC=GE

=>G là trung điểm của EC

Ta có: EC=2GC

BK=2GB

mà GC=GB

nên EC=BK

Xét tứ giác BCKE có

G là trung điểm chung của BK và CE

=>BCKE là hình bình hành

Hình bình hành BCKE có \(\hat{BCK}=90^0\)

nên BCKE là hình chữ nhật

=>\(\overrightarrow{CB}+\overrightarrow{CK}=\overrightarrow{CE}=2\cdot\overrightarrow{CG}\)

\(\overrightarrow{GA}+\overrightarrow{CB}=\overrightarrow{CK}+\overrightarrow{CB}=2\cdot\overrightarrow{CG}\)

=>\(\overrightarrow{GA}+\overrightarrow{GB}-\overrightarrow{GC}=2\cdot\overrightarrow{CG}\)


Các câu hỏi tương tự
Khả Dii Cố
Xem chi tiết
Nguyễn Thị Diệu My
Xem chi tiết
luong phan ngoc thu
Xem chi tiết
NHUY NGUYEN
Xem chi tiết
Jig wake saw_Khánh Ly
Xem chi tiết
Haruno Sakura
Xem chi tiết
Vương Nghĩa
Xem chi tiết
Nguyễn kim Hoàn
Xem chi tiết
Đào Thị Thanh Huyền
Xem chi tiết