Cm bất đẳng thức sau vs a, b, c, d >0.
A^4+b^4>_ ab(a^2+b^2)
Cm bất đẳng thức sau vs a, b, c >0.
(a+b)(ab+1)>_0
Cm bất đẳng thức sau vs a, b, c >0.
(a+b)(ab+1)>_4ab
\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab.1}=4ab\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b\\ab=1\end{matrix}\right.\Leftrightarrow a=b=1\)
P/s: Cho em hỏi cái: c ở đâu ra vại:v
Cho 0 <a,b,c <1. CM có ít nhất 1 bất đẳng thức sai trong ba bất đẳng thức sau:
a (1-b)>1/4
b (1-c)>1/4
c (1-a)>1/4
Cm bất đẳng thức sau : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)
Ta có : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+4\ge ab+2a+2b\)
\(\Leftrightarrow2\left(a^2+b^2+4\right)\ge2\left(ab+2a+2b\right)\)
\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)
\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+4+4-2ab-4a-4b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng nên ta có đpcm
Dấu đẳng thức xảy ra khi và chỉ khi a=b=2
1. Cho x,y ∈ Z. Cm x2+y2 ⋮ 3 ⇔ x ⋮ 3 và y ⋮ 3
2. Cho 0 < a <1, 0 < b <1, 0 < c <1. Cmr trong các bất đẳng thức sau có ít nhất 1 bất đẳng thức sai
a(1-b) ≥ 1/4
b(1-c) ≥ 1/4
c(1-a) ≥ 1/4
3. Cho n ∈ N Cm 2n-1 và 2n+1 không đồng thời là số nguyên tố
4. Cho a,b,c ∈ R thỏa mãn \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ac>0\\abc>o\end{matrix}\right.\) CM a>0, b>0, c>0
Bài 1:
Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)
Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.
Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)
\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )
Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$
Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)
Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)
Chiều đảo:
Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)
Vậy ta có đpcm.
Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.
Phản chứng, giả sử cả 3 BĐT đều đúng
\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)
Theo BĐT AM-GM thì:
\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)
\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)
\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)
Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.
Bài 3:
$n=2$ thỏa mãn 2 số trên đều là nguyên tố nhé.
Đặt \(\left\{\begin{matrix} 2^n-1=p\\ 2^n+1=q\end{matrix}\right.\) \(\Rightarrow pq=(2^n-1)(2^n+1)=2^{2n}-1=4^n-1\)
Vì \(4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1^n\equiv 1\pmod 3\)
\(\Rightarrow 4^n-1\vdots 3\Rightarrow pq\vdots 3\Rightarrow \left[\begin{matrix} p\vdots 3\\ q\vdots 3\end{matrix}\right.\)
Nếu $p\vdots 3$ thì $p=3$
\(\Rightarrow 2^n-1=3\Rightarrow 2^n=4\Rightarrow n=2\)
\(\Rightarrow 2^n+1=2^2+1=5\in\mathbb{P}\) (thỏa mãn)
Nếu $q\vdots 3$ thì $q=3$ \(\Rightarrow 2^n+1=3\Rightarrow 2^n=2\Rightarrow n=1\)
\(\Rightarrow p=2^n-1=2^1-1=1\not\in\mathbb{P}\) (loại trừ)
Vậy $n=2$ vẫn thỏa mãn 2 số trên đều là số nguyên tố nhé.
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(A^2+B^2\ge AB+AB\)
B) \(A^3+B^3\ge A^2B+AB^2\)
C) \(A^4+B^4\ge A^3B+AB^3\)
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm
cm bất đẳng thức vs a,b,c dương
\(\dfrac{a^8}{b^4}+\dfrac{b^8}{c^4}+\dfrac{c^8}{a^4}\ge ab^3+bc^3+ca^3\)
\(\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{2ca}{b}+4b^2c^2\ge8abc\)
\(\dfrac{a^4}{b^2c^2}+\dfrac{b^4}{a^2c^2}+\dfrac{c^4}{a^2b^2}\ge\dfrac{b}{\sqrt{ac}}+\dfrac{c}{\sqrt{ab}}+\dfrac{a}{bc}\)
1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :
A. 11 B. -7 C. 7 D. 2
2. Bậc của đơn thức (- 2x3) 3x4y là :
A.3 B. 5 C. 7 D. 8
3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:
A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c
4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm
C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm
1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :
A. 11 B. -7 C. 7 D. 2
2. Bậc của đơn thức (- 2x3) 3x4y là :
A.3 B. 5 C. 7 D. 8
3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:
A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c
4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm
C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(A^2+B^2\ge AB+AB\)
B) \(A^3+B^3\ge A^2B+AB^2\)
C) \(A^4+B^4\ge A^3B+AB^3\)
A)\(A^2+B^2\ge AB+AB\)
\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)
\(\Leftrightarrow A^2-2AB+B^2\ge0\)
\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)
Vậy \(A^2+B^2\ge AB+AB\)(đpcm)