Phân tích đa thức thành nhân tử
a) x²+2x-8
b)x²+5x+6
Phân tích đa thức 8𝑥 3 -1 thành nhân tử
A.(2𝑥 − 1)(4𝑥 2+2x+1)
B.(2𝑥 + 1)(4𝑥 2+2x+1)
C.(2𝑥 − 1)(4𝑥 2 - 2x+1)
D.(2𝑥 − 1)(4𝑥 2+4x+1)
Câu 17 Phân tích đa thức 5x2 -4x +10xy-8y thành nhân tử
A..(5x-4)(x-2y)
B. (x+2y)(5x-4)
C.(5x-2y)(x+4y)
D.(5x+4)(x-2y)
Câu 18 Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử :
A. (2x + y)3
B.(2x - y)3
C. (2x + y3 ) 3
D. (2x3 + y)3
Câu 19 Tìm x, biết (x + 2) . ( x – 1 ) – x 2 = –1
A. x = –2 4
B. x = 2
C. x = 1
D. x = –1
Câu 20 Tìm x biết x . ( x – 3) = x2 + 6
A. x = 2
B. x = –2
C. x = 4
D. x = 6
Câu 21 Tìm x biết : (𝑥 + 3)(𝑥 − 3) − 𝑥(𝑥 − 3) =0
A. x = 3.
B. x= -3
C. x=1
D. x=0
\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)
phân tích đa thức thành nhân tử
a) \(P=x^2-5x+6\)
b) \(P=3x^2+14x-5\)
c) \(P=-2x^2-7x-5\)
a: \(P=x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b: \(P=3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)\)
\(=\left(x+5\right)\left(3x-1\right)\)
c: \(P=-2x^2-7x-5\)
\(=-\left(2x^2+7x+5\right)\)
\(=-\left(2x^2+2x+5x+5\right)\)
\(=-\left[2x\left(x+1\right)+5\left(x+1\right)\right]\)
\(=-\left(x+1\right)\left(2x+5\right)\)
phân tích đa thức thành nhân tử
a) 2x-4+xy-2y
b)x^3+2xy-4+y^2
c)x^2-5x-14
a: =2(x-2)+y(x-2)
=(x-2)(2+y)
b: \(=\left(x+y\right)^2-4=\left(x+y+2\right)\left(x+y-2\right)\)
c: =(x-7)(x+2)
a.
2x - 4 + xy - 2y
= 2(x-2) +y(x-2)
= (x-2)(y+2)
c.
x^2 - 5x - 14
= x^2 + 2x - 7x - 14
= x(x+2) - 7(x+2)
= (x-7)(x+2)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Bài 2 : Phân tích đa thức sau thành nhân tử
a) 5x^2 + 30y
b) x^3 - 2x^2 - 4xy^2 + x
Bài 3 : Tìm x , biết
a) 2x(x - 3 ) - x + 3 = 0
b) ( 3x - 1 ) ( 2x + 1 ) - (x + 1)^2 = 5x^2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Bài 3:
a: \(2x\left(x-3\right)-x+3=0\)
=>\(2x\left(x-3\right)-\left(x-3\right)=0\)
=>(x-3)(2x-1)=0
=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
b: \(\left(3x-1\right)\left(2x+1\right)-\left(x+1\right)^2=5x^2\)
=>\(6x^2+3x-2x-1-x^2-2x-1=5x^2\)
=>\(5x^2-x-2=5x^2\)
=>-x-2=0
=>-x=2
=>x=-2
phân tích đa thức thành nhân tử
a)x^3+5x^2+5x+1
b)x^2(x^2+2y^2)-3y^4
a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+1\right)\)
1) Phân tích đa thức thành nhân tử
a) 2x4-4x3+2x2
b) 2x2-2xy+5x-5y
2) Tìm x, biết:
a) 4x(x-3)-x+3=0
b)(2x-3)2-(x+1)2=0
1.
a) \(2x^4-4x^3+2x^2\)
\(=2x^2\left(x^2-2x+1\right)\)
\(=2x^2\left(x-1\right)^2\)
b) \(2x^2-2xy+5x-5y\)
\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)
\(=2x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(2x+5\right)\)
2 .
a,
\(4x\left(x-3\right)-x+3=0\)
⇒\(4x\left(x-3\right)-\left(x-3\right)=0\)
⇒\(\left(x-3\right)\left(4x-1\right)=0\)
⇒\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)
b,
\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)
⇒\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0
⇒\(\left(x-4\right)\left(3x-2\right)=0\)
⇔\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)
Phân tích đa thức thành nhân tử
a) \(5x-y+ax-ay\)
b) \(a^3-a^2x-ay+xy\)
c) \(4x^2-y^2+4x+1\)
d) \(x^4+2x^3+x^2\)
e) \(5x^2-10xy+5y^2-5z^2\)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
phân tích đa thức sau hành nhân tử
a) (x+3)(5x-1)=5(x+1)(x-2)
b) (2x-3)(x+1)=2x(x-1)
a) \(\left(x+3\right)\left(5x-1\right)=\left(5x+1\right)\left(x-2\right)\)
\(\left(x+3\right)\left(5x-1\right)-\left(5x+1\right)\left(x-2\right)=0\)
\(\left(x+3\right)\left(5x-1\right)+\left(5x-1\right)\left(x-2\right)=0\)
\(\left(x+3+x-2\right)\left(5x-1\right)=0\)
\(\left(2x-1\right)\left(5x-1\right)=0\)
Xảy ra 2 trường hợp:
TH1:2x-1=0⇒x=\(\dfrac{1}{2}\)
TH2:5x-1=0⇒x=\(\dfrac{1}{5}\)
b: Ta có: \(\left(2x-3\right)\left(x+1\right)=2x\left(x-1\right)\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+2x=0\)
\(\Leftrightarrow x=3\)
bài 1 phân tích đa thức thành nhân tử
a)3x(x-7)+2xy-14y
b)9(2x-5)^2+15x-6x^2
c)6x^2 -12x+6
d)-20x^2+60xy-45y^2
e)2xy^3-16x^4
f)3x^4-48
g)x^2-z^2+4xy+4y^2
h)x^2-z^2+2xy-6zt+y^2-9t^2
baif2 pt đa thức thanhhf nhân tử
a)x^2-12x+20
b)2x^2-x-15
c)x^3-x^2+x-1
d)2x^3-5x-6
e)4y^4+1
f)x^7+x^5+x^3
g)(x^2+x)^2-5(x^2+x)+6
h)(x^2+2x)^2-2(x+1)^2-1
i)x^2+4xy+4y^2-4(x+2y)+3
j)x(x+1)(x+2)(x+3)-3
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)