Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 22:40

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2019 lúc 5:57

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2018 lúc 18:02

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2017 lúc 17:29

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 7 2019 lúc 15:10

y ' = - 2 x - 1 2 < 0 trên đoạn [3; 5]. Vậy hàm số nghịch biến trên đoạn [3; 5].

Khi đó trên đoạn [-3,5]: hàm số đạt giá trị lớn nhất tại x = 3 và giá trị lớn nhất bằng 2, hàm số đạt giá trị nhỏ nhất tại x = 5 và giá trị nhỏ nhất = 1.5.

Quỳnh Như Trần Thị
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 10:16

Đồ thị hàm số \(y=f\left(x\right)=x^2+10x+9\):

Dựa vào đồ thị ta thấy hàm số đồng biến trên \(\left(-5;+\infty\right)\).

P/s: Nên vẽ bảng biến thiên, bảng biến thiên trên máy tính nó vẽ mất công nên mới vẽ đồ thị thôi.

lê phương thảo
Xem chi tiết
Lê Ngọc Nhả Uyên
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 17:56

a.

\(y'=4x^3+8x=4x\left(x^2+2\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\) và nghịch biến trên \(\left(-\infty;0\right)\)

b.

\(y'=3x^2+6x+3=3\left(x+1\right)^2\ge0\) ; \(\forall x\)

\(\Rightarrow\) Hàm đồng biến trên R

Hà Quỳnh Chi
Xem chi tiết